Logo Serwisu Media Nauka


zadanie

Zadanie 806 - długość łuku okręgu


Jaką miarę ma kąt środkowy, jeżeli długość łuku okręgu na nim opartego jest równa \frac{3}{4}\pi a promień tego okręgu ma długość 3?


ksiązki Rozwiązanie zadania uproszczone

d=\frac{\alpha}{360}\cdot 2\pi r\\ \frac{3}{4}\pi=\frac{\alpha}{360}\cdot 2\pi \cdot 6/:\pi\\ \frac{3}{4}=\frac{\alpha}{360} \cdot 12\\ \alpha=45

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Długość łuku okręgu o kącie środkowym \alpha^o(kąt wyrażony w stopniach) i promieniu r jest równa

d=\frac{\alpha}{360}\cdot 2\pi r

Długość łuku okręgu na nim opartego jest równa \frac{3}{4}\pi a promień tego okręgu ma długość 3. Podstawiamy więc dane:

d=\frac{\alpha}{360}\cdot 2\pi r\\ \frac{3}{4}\pi=\frac{\alpha}{360}\cdot 2\pi \cdot 6/:\pi\\ \frac{3}{4}=\frac{\alpha}{360} \cdot 12\\ \frac{3}{4}=\frac{\alpha}{30}\\ 4\alpha=3\cdot 30/:4\\ \alpha=45

ksiązki Odpowiedź

\alpha=45^o

© Media Nauka, 2012-02-25


Spis działów

Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza matematyczna

Analiza

Geometria

Geometria

Rachunek prawdopodobieństwa

Probabilistyka



Polecamy