Logo Serwisu Media Nauka


Działania na współrzędnych wektorów

Twierdzenie Twierdzenie

Jeżeli \vec{a}=[a_x,a_y],\ \vec{b}=[b_x,b_y], \ k\in R, to:

\vec{a}+\vec{b}=[a_x+b_x,a_y+b_y]
\vec{a}-\vec{b}=[a_x-b_x,a_y-b_y]
k\vec{a}=[ka_x,ka_y]

Przykład Przykład

Dane są wektory:\vec{a}=[3,4], \ \vec{b}=[1,2].

Obliczamy sumę wektorów: \vec{a}+\vec{b}=[3+1,4+2]=[4,6]
Obliczamy różnicę wektorów: \vec{a}-\vec{b}=[3-1,4-2]=[2,2]
Obliczamy różnicę wektorów: \vec{b}-\vec{a}=[1-3,2-4]=[-2,-2]
Obliczamy iloczyn wektora przez liczbę k=2: 2\vec{a}=2\cdot [3,4]=[2\cdot 3,2\cdot 4]=[6,8]

Teoria Jeśli wektor jest wyrażony jako suma wersorów układu mnożonych przez odpowiednie współrzędne wektorów wówczas sumując je lub odejmując od siebie, sumujemy lub odejmujemy odpowiednie składowe wektorów, grupując je.

Przykład Przykład

Dane są wektory:
\vec{a}=5\vec{i}-2\vec{j}\\ \vec{b}=-2\vec{i}+2\vec{j}
Znaleźć sumę tych wektorów.

Wykonujemy więc dodawanie:

\vec{a}+\vec{b}=5\vec{i}-2\vec{j}+(-2\vec{i}+2\vec{j})=5\vec{i}-2\vec{i}-2\vec{j}+2\vec{j}=\\ =(5-2)\vec{i}+(-2+2)\vec{j}=3\vec{i}+0\cdot \vec{j}=3\vec{i}


© Media Nauka, 2008-04-25, ART-32



Zadania z rozwiązaniami

spis treści
Zbiór zadań związany
z niniejszym artykułem.


zadanie - ikonka Zadanie 675 - działania na wektorach
Dane są wektory \vec{a}=[-2,3], \ \vec{b}=[3,-3], \vec{c}=[2,4]. Znaleźć:
\vec{a}+\vec{b},\ -\vec{a}+\vec{c},\ \vec{a}+\vec{b}+\vec{c},\ \vec{b}-\vec{a},\ \vec{c}-\vec{a}+\vec{b},\ 5\vec{a}-3\vec{b}

zadanie - ikonka Zadanie 677 - działania na współrzędnych wektorów
Dane są wektory \vec{a}=-5\vec{i}+6\vec{j}, \ \vec{b}=3\vec{i}-4\vec{j}, \ \vec{c}=\vec{i}-4\vec{j}.
Oblicz \vec{a}+\vec{b}, \ \vec{c}+\vec{b},\ \vec{a}+\vec{b}-\vec{c}

zadanie - ikonka Zadanie 679 - działania na współrzędnych wektora
Dany jest wektor \vec{a}=[2,4].Jakie współrzędne ma wektor \vec{b}, jeżeli wiadomo, że \vec{a}-\vec{b}=[7,7]?



Spis działów

Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza matematyczna

Analiza

Geometria

Geometria

Rachunek prawdopodobieństwa

Probabilistyka



Polecamy