Logo Media Nauka

Facebook

Dlaczego często kroimy kiełbasę pod kątem?

kiełbasa

Krojenie plasterków kiełbasy, salami lub innej wędliny jest dość częstą praktyką. Ma ona na celu ukrojenie zwyczajnie większych plastrów. Jak to możliwe i jak wielkie mogą być plastry? Z pomocą przychodzi twierdzenie Pitagorasa.

To jedno z kuchennych zastosowań matematyki.

Poniższy rysunek przedstawia model kiełbasy, krojonej pod kątem. Jeżeli kiełbasa może być uznana jako walec o średnicy podstawy d, to jeżeli będziemy naszą kiełbasę kroić pod kątem prostym, plasterki będą kołami o średnicy d.

Kiełbasa

Jeśli zaś kroić kiełbasę pod pewnym kątem, plasterki zaczną przypominać elipsę. Oś wielką oznaczmy przez M. Korzystając z twierdzenia Pitagorasa otrzymamy:

M=\sqrt{(a-b)^2+d^2}

Średnica kiełbasy jest stała. Z powyższego wzoru widać, że gdy b zdąża do zera, oś elipsy zbliża się coraz bardziej do wartości a. Zatem plastry kiełbasy mogą mieć maksymalnie długość zbliżoną do

M=\sqrt{a^2+d^2}.

Długość plastra jest zatem ograniczona wyłącznie długością kiełbasy.

Plastry mają podczas krojenia pod kątem większą powierzchnię - stają się bardziej pożywne, a kształt plastra zamiast koła przybiera postać elipsy, co może mieć także znaczenie estetyczne.


© medianauka.pl, 2019-09-16, ART-3681

 




Ostatnio opublikowane w Pytajniku ...

Czym się różni krokodyl od aligatora?
Czym się różni krokodyl od aligatora?

Czy krokodyl i aligator to synonimy? Czy łatwo je odróżnić od siebie? Jakie cechy charakteryzują te zwierzęta?

Krokodyle łzy - czy krokodyl płacze?
Krokodyle łzy - czy krokodyl płacze?

Czy krokodyle płaczą? Co to znaczy wylewać krokodyle łzy? Co to wszystko ma wspólnego ze szczerością?

Gdzie żyją krokodyle?
Gdzie żyją krokodyle?

Czy krokodyle żyją tylko w Nilu i prowadzą tylko wodny tryb życia? Czy można spotkać krokodyla w Polsce?



Zobacz też

Twierdzenie PitagorasaTwierdzenie Pitagorasa
W trójkącie prostokątnym kwadrat przeciwprostokątnej jest równy sumie kwadratów przyprostokątnych a^2+b^2=c^2.
Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
© ® Media Nauka 2008-2020 r.