Logo Serwisu Media Nauka

zadanie

Zadanie - zastosowanie twierdzenia Talesa


Dane są odcinki o długościach: a, b, c. Opisać sposób konstrukcji odcinka d o długości:
a) d=\frac{ab}{c}
b) d=\frac{b^2}{a}


ksiązki Rozwiązanie zadania uproszczone

a)Twierdzenie Talesa b) Twierdzenie Talesa

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

a) Korzystamy z twierdzenia Talesa. Przekształcamy jednak najpierw wyrażenie tak, aby otrzymać stosunki długości, przy czym warto, aby szukana długość d znalazła się w mianowniku ułamka.

d=\frac{ab}{c}/\cdot \frac{c}{bd}\\ \frac{c}{b}=\frac{a}{d}

Korzystamy teraz z Twierdzenia Talesa. Na jednym ramieniu kąta odkładamy kolejno odcinki o długościach c i b, na drugim ramieniu kąta odkładamy odcinek o długości a, a następnie kreślimy prostą łączącą końce odcinków o długościch c i a. Następnie kreślimy prostą równoległą przechodzącą przez koniec odcinka o długości b. Prosta ta na drugim ramieniu kąta odkłada nam szukany odcinek o długości d. Ilustruje to poniższy rysunek:

Twierdzenie Talesa

b) Podobnie postępujemy i tutaj. Inna jest tylko zależność między długościami odcinków:

d=\frac{b^2}{a}/\cdot \frac{a}{bd}\\ \frac{a}{b}=\frac{b}{d}
Twierdzenie Talesa

ksiązki Odpowiedź

a)|AC|=64, \ b)|CD|=9

© medianauka.pl, 2011-01-07, ZAD-1083





Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza

Analiza

Geometria

Geometria

Prawdopodobieństwo

Probabilistyka



Polecamy koszyk


© Media Nauka 2008-2017 r.