Zadanie maturalne nr 6, matura 2016 (poziom rozszerzony)
Badane grupy | Liczba osób popierających budowę przedszkola | Liczba osób niepopierających budowy przedszkola |
Kobiety | 5140 | 1860 |
Mężczyźni | 2260 | 740 |
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że losowo wybrana osoba, spośród ankietowanych, popiera budowę przedszkola, jeśli wiadomo, że jest mężczyzną. Zakoduj trzy pierwsze cyfry po przecinku nieskończonego rozwinięcia dziesiętnego otrzymanego wyniku.
Rozwiązanie zadania
Na ile sposobów możemy wylosować jednego mężczyznę (zdarzenie A), który popiera budowę przedszkola? Jest ich 2260, wybieramy jednego, wiec mamy 2260 możliwości.
Ile jest wszystkich zdarzeń elementarnych (Ω)? Tyle ile jest razem wszystkich mężczyzn w badanej próbie, a mianowicie 2260 tych, którzy popierają budowę przedszkola i 740 tych, którzy nie popierają budowy, czyli 2260+740 = 3000.

Odpowiedź
© medianauka.pl, 2016-11-01, ZAD-3276
Zadania podobne

Losujemy dwie osoby z grupy osób, w której znajduje się 4 chłopaków i 3 dziewczyny. Jakie jest prawdopodobieństwo wylosowania pary dziewczyna i chłopak?
Pokaż rozwiązanie zadania

Rzucamy trzy razy monetą. Jakie jest prawdopodobieństwo wyrzucenia co najmniej dwa razy orła?
Pokaż rozwiązanie zadania

Oblicz prawdopodobieństwo wyrzucenia co najmniej 3 oczek symetryczną kością do gry.
Pokaż rozwiązanie zadania

Rzucamy trzy razy symetryczną monetą. Niech p oznacza prawdopodobieństwo otrzymania dokładnie dwóch orłów w tych trzech rzutach. Wtedy
A. 0≤p<0,2
B. 0,2≤p≤0,35
C. 0,35<p≤0,5
D. 0,5<p≤1
Pokaż rozwiązanie zadania

Ze zbioru wszystkich liczb naturalnych dwucyfrowych losujemy kolejno dwa razy po jednej liczbie bez zwracania. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie równa 30. Wynik zapisz w postaci ułamka zwykłego nieskracalnego.
Pokaż rozwiązanie zadania

W każdym z trzech pojemników znajduje się para kul, z których jedna jest czerwona, a druga – niebieska. Z każdego pojemnika losujemy jedną kulę. Niech p oznacza prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwie z trzech wylosowanych kul będą czerwone. Wtedy:
A. p=1/4
B. p=3/8
C. p=1/2
D. p=2/3
Pokaż rozwiązanie zadania

Wśród 115 osób przeprowadzono badania ankietowe, związane z zakupami w pewnym kiosku. W poniższej tabeli przedstawiono informacje o tym, ile osób kupiło bilety tramwajowe ulgowe oraz ile osób kupiło bilety tramwajowe normalne.
Rodzaj kupionych biletów | Liczba osób |
ulgowe | 76 |
normalne | 41 |
Uwaga! 27 osób spośród ankietowanych kupiło oba rodzaje biletów.
Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że osoba losowo wybrana
spośród ankietowanych nie kupiła żadnego biletu. Wynik przedstaw w formie nieskracalnego
ułamka.
Pokaż rozwiązanie zadaniaZadanie maturalne nr 30, matura 2014
Ze zbioru liczb {1, 2, 3, 4, 5, 6, 7, 8} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A, polegającego na wylosowaniu liczb, z których pierwsza jest większa od drugiej o 4 lub 6.
Pokaż rozwiązanie zadaniaZadanie maturalne nr 25, matura 2018
W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe
- 15/35
- 1/50
- 15/30
- 35/50
Pokaż rozwiązanie zadania

Dane są dwa zbiory: A = {100, 200, 300, 400, 500, 600, 700} i B = {10,11,12,13,14,15,16}. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego.
Pokaż rozwiązanie zadania

Z liczb ośmioelementowego zbioru Z={1, 2, 3, 4, 5, 6, 7, 9} tworzymy ośmiowyrazowy ciąg, którego wyrazy nie powtarzają się. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że żadne dwie liczby parzyste nie są sąsiednimi wyrazami utworzonego ciągu. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego.
Pokaż rozwiązanie zadania