Logo Serwisu Media Nauka

zadanie

Zadanie - figury geometryczne


Ile maksymalnie prostych może wyznaczyć 10 punktów na płaszczyźnie? A ile w przestrzeni?


ksiązki Rozwiązanie zadania uproszczone

x=C_{10}^2={10\choose 2}=\frac{10!}{2!(10-2)!}=\frac{\cancel{8!}\cdot 9 \cdot 10}{2\cdot \cancel{8!}}=\frac{90}{2}=45

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Liczbę wyznaczonych prostych przez 10 punktów, z których każde 3 nie są współliniowe możemy policzyć, korzystając z pojęcia kombinacji k-elementowych zbioru n-elementowego. Dlaczego każde trzy mają być niewspółliniowe? Otóż, jeżeli dowolne trzy punkty będą współliniowe, to te trzy punkty wyznaczą dwie proste identyczne. W treści zadania szukamy maksymalnej liczby prostych, a więc nie interesują nas przypadki, w których proste są identyczne.

Mamy więc zbiór 10-elementowy punktów. Wybieramy dwa dowolne punkty, które zgodnie z aksjomatem o dwóch punktach i prostej wyznaczają jedną prostą (wybieramy 2 elementy ze zbioru 10-punktów, czyli k=2). Kolejność wyboru punktów nie ma znaczenia, bo czy wybierzemy punkt A, potem B, czy też najpierw B, a potem A, to i tak tworzymy jedną prostą między nimi. Punkty są różne i nie mogą się powtarzać (musimy wybierać 2 różne punkty), więc tworzymy kombinacje dwuelementowe zbioru 10-elementowego. (Spójrz na tabelę, w której zestawiono permutacje, kombinacje i wariacje.) Liczbę kombinacji oraz liczbę wyznaczonych prostych x obliczamy następująco:

C_n^k={n\choose k}=\frac{n!}{k!(n-k)!}

Dla k=2 i n=10 mamy:

x=C_{10}^2={10\choose 2}=\frac{10!}{2!(10-2)!}=\frac{\cancel{8!}\cdot 9 \cdot 10}{2\cdot \cancel{8!}}=\frac{90}{2}=45

W przestrzeni punkty te wyznaczają tyle samo prostych

ksiązki Odpowiedź

x = 45

© medianauka.pl, 2010-10-25, ZAD-992





Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza

Analiza

Geometria

Geometria

Prawdopodobieństwo

Probabilistyka



Polecamy koszyk


© Media Nauka 2008-2017 r.