logo

Pierwsza zasada dynamiki ruchu obrotowego

Pierwszą zasadę dynamiki dla ruchu obrotowego można określić w następujący sposób:

Jeżeli na bryłę sztywną nie działają żadne momenty sił, to bryła ta pozostaje nieruchoma lub wykonuje ruch obrotowy jednostajny (ze stałą prędkością kątową).

Gdy żadne momenty sił nie działają lub wypadkowa działających momentów sił jest równa zeru, nie mamy do czynienia z przyspieszeniem kątowym. Bryła pozostaje w spoczynku lub będzie się obracać cały czas ze stałą kątową prędkością.

W rzeczywistości działają momenty sił tarcia i oporu powietrza, które powodują, iż ruch obrotowy ustaje. Gdy jednak zawiesimy na przykład w próżni na poduszkach magnetycznych bryłę i wprawimy ją w ruch obrotowy, to mamy do czynienia z niemalże idealnym ruchem obrotowym jednostajnym.



© medianauka.pl, 2017-02-11, ART-3473

Inne zagadnienia z tej lekcji

Dynamika ruchu po okręgu

Dynamika ruchu po okręgu

Na ciało doznające przyspieszenia dośrodkowego działa siła o stałej wartości i zwrócona do środka okręgu. Jest to siła dośrodkowa. W nieinercjalnym układzie odniesienia pojawia się szczególny przypadek siły bezwładności - siła odśrodkowa bezwładności.

Bryła sztywna

Bryła sztywna

co to jest bryła sztywna? Bryła sztywna jest to ciało fizyczne, które pod wpływem działania sił zewnętrznych nie ulega odkształceniom. Jest to jedynie pojęcie modelowe. W rzeczywistości nie ma idealnej bryły sztywnej. Dla bryły sztywnej wnioski i zależności są słuszne jak dla układu punktów materialnych.

Rodzaje ruchu bryły sztywnej

Rodzaje ruchu bryły sztywnej

Rodzaje ruchu bryły sztywnej. Bryła sztywna z uwagi na to, iż jest rozciągła w przestrzeni, może poruszać się ruchem postępowym i obrotowym. Co to jest ruch postępowy? Co to jest ruch obrotowy brył sztywnej? Ilustracja ruchu postępowego i obrotowego.

Moment siły

Moment siły

Moment siły F względem punktu O osi obrotu jest to iloczyn wektorowy wektora wodzącego r punktu przyłożenia siły F i tej siły. Początek wektora r leży w punkcie O. Moment siły jest też nazywany inaczej momentem obrotowym, a wektor wodzący ramieniem siły. Jednostką momentu siły jest niutonometr.

Moment bezwładności

Moment bezwładności

Definicja momentu bezwładności oraz tablica momentów bezwładności dla różnych brył. Moment bezwładności bryły względem danej osi nazywamy sumę iloczynu mas poszczególnych punktów bryły i kwadratów odległości od danej osi. Dla każdej bryły moment bezwładności może być inny.

Twierdzenie Steinera

Twierdzenie Steinera

Twierdzenie Steinera wraz z przykładem. Moment bezwładności I bryły względem dowolnej osi jest równy sumie momentu bezwładności I0 względem osi równoległej, przechodzącej przez środek masy bryły oraz iloczynu masy tej bryły i kwadratu odległości d obu osi.

Druga zasada dynamiki dla ruchu obrotowego

Druga zasada dynamiki dla ruchu obrotowego

Druga zasada dynamiki dla ruchu obrotowego. Jeżeli wypadkowy moment sił, które działają na bryłę nie jest równy zeru, to bryła porusza się ruchem zmiennym obrotowym z przyspieszeniem kątowym, które jest wprost proporcjonalne do wypadkowego momentu sił.

Trzecia zasada dynamiki dla ruchu obrotowego

Trzecia zasada dynamiki dla ruchu obrotowego

Trzecią zasadę dynamiki dla ruchu obrotowego można określić w następujący sposób: Jeżeli na bryłę A działa bryła B pewnym momentem siły, to bryła B działa na bryłę A momentem równym co do wartości, ale przeciwnie skierowanym.

Moment pędu

Moment pędu

Moment pędu określamy nieco inaczej dla punktu materialnego, który porusza się ruchem po okręgu i inaczej dla bryły sztywnej, która porusza się ruchem obrotowym.

Ruch obrotowy - wzory

Ruch obrotowy - wzory

W niniejszym artykule zestawiono najważniejsze wzory i oznaczenia związane z ruchem obrotowym. W tabeli opisano oprócz wielkości związanych z ruchem obrotowym ich odpowiedniki w ruchu prostoliniowym.







Polecamy w naszym sklepie

Lupy
Atlas gwiazd
metalowa sprężyna
Żyroskop
Kolorowe skarpetki urodzinowe
Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
© ® Media Nauka 2008-2022 r.