Zadanie maturalne nr 26, matura 2016 (poziom podstawowy)


W tabeli przedstawiono roczne przyrosty wysokości pewnej sosny w ciągu sześciu kolejnych lat.

tabela

Oblicz średni roczny przyrost wysokości tej sosny w badanym okresie sześciu lat. Otrzymany wynik zaokrąglij do 1 cm. Oblicz błąd względny otrzymanego przybliżenia. Podaj ten błąd w procentach.


ksiązki Rozwiązanie zadania

Średnia arytmetyczna liczb rzeczywistych \(x_1,x_2,...,x_n\) jest to liczba \(\overline{x}\) określona wzorem:

\(\overline{x}= \frac{x_1+x_2+... +x_n}{n}\)

Mamy więc:

\(\overline{x}=\frac{10+10+7+8+8+7}{6}=\frac{50}{6} =\frac{25}{3}=8\frac{1}{3}\)

Ponieważ przyrosty w tabeli są wyrażone w cm, nasz wynik również jest wyrażony w cm. Musimy zaokrąglić wynik do 1 cm. Oznaczmy wynik zaokrąglony przez \(\widetilde{x}\). Mamy więc:

\(\widetilde{x}=8\ cm\)

Obliczmy błąd względny:

\(\frac{|\overline{x}-\widetilde{x}|}{\overline{x}} = \frac{|8\frac{1}{3}-8|}{8\frac{1}{3}} = \frac{\frac{1}{3}}{\frac{25}{3}}=\frac{1}{3}\cdot \frac{3}{25}=\frac{1}{25}=0,04=4\%\)

ksiązki Odpowiedź

Średni przyrost roczny wysokości sosny w okresie 6 lat wynosi 8 cm z 4% błędem przybliżenia.

© medianauka.pl, 2016-11-01, ZAD-3252

Zadania podobne

kulkaZadanie - średnia arytmetyczna

W zespole pracowników liczącym 30 osób 30% urodziło się w 1971 roku, 20% w 1980, 2 osoby w 1954 roku, 1 osoba w 1990, 3 osoby w 1972, 3 w 1973, 3 w 1975, 2 w 1979, 1 osoba w 1981. Jaka jest średnia wieku w zespole?



Pokaż rozwiązanie zadania

kulkaZadanie - średnia arytmetyczna

Oblicz średnią arytmetyczną dziesięciu kolejnych liczb pierwszych.



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 25, matura 2016 (poziom podstawowy)

Średnia arytmetyczna sześciu liczb naturalnych \(31, 16, 25, 29, 27, x\) jest równa \(\frac{x}{2}\). Mediana tych liczb jest równa

A. 26

B. 27

C. 28

D. 29



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 24, matura 2015 (poziom podstawowy)

Średnia arytmetyczna zestawu danych: \(2, 4, 7, 8, 9\) jest taka sama jak średnia arytmetyczna zestawu danych: \(2, 4, 7, 8, 9, x\). Wynika stąd, że

A. \(x=0\)

B. \(x=3\)

C. \(x=5\)

D. \(x=6\)



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 28, matura 2022

Średnia arytmetyczna zestawu sześciu liczb \(2x, 4, 6, 8, 11, 13\) jest równa \(5\). Wynika stąd, że

A. \(x=-1\)

B. \(x=7\)

C. \(x=-6\)

D. \(x=6\)



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 29, matura 2023

Na diagramie poniżej przedstawiono ceny pomidorów w szesnastu wybranych sklepach.

Zadanie 29, matura 2023, matematyka

Uzupełnij tabelę. Wpisz w każdą pustą komórkę tabeli właściwą odpowiedź, wybraną spośród oznaczonych literami A–E.

1. Mediana ceny kilograma pomidorów w tych wybranych sklepach jest równa  
2. Średnia cena kilograma pomidorów w tych wybranych sklepach jest równa  

A. 5,80 zł

B. 5,73 zł

C. 5,85 zł

D. 6 zł

E. 5,70 zł



Pokaż rozwiązanie zadania




©® Media Nauka 2008-2023 r.