Układ nierówności

Teoria Analogicznie do układów równań możemy rozpatrywać układy nierówności. Na przykład:

\begin{cases}a_1x+b_1y>c_1\\a_2x+b_2y\leq{c_2}\end{cases}

Podano tutaj przykładowe znaki nierówności. Ze względu na możliwy kierunek i rodzaj nierówności otrzymujemy wiele możliwości różnych układów nierówności.

Jeżeli obie nierówności w układzie nierówności są nierównościami pierwszego stopnia, to układ taki nazywamy układem dwóch nierówności pierwszego stopnia z dwiema niewiadomymi.

Rozwiązanie układu nierówności

Definicja Definicja

Zbiór wszystkich par liczb (x,y), które spełniają jednocześnie obie nierówności nazywamy rozwiązaniem układu tych nierówności.

Przykład Przykład

Oto przykład układu nierówności:

\begin{cases}x+y>0\\x-y<1\end{cases}

Para liczb (3,4) jest jednym z rozwiązań powyższego układu nierówności. Możemy to sprawdzić, podstawiając te liczby do obu nierówności.

\begin{cases}3+4>0\\3-4<1\end{cases}\\{\begin{cases}7>0\\-1<1\end{cases}}

Rozwiązać układ nierówności to znaczy znaleźć wszystkie rozwiązania tego układu nierówności, albo wykazać, że jest nim zbiór pusty. Zbiór rozwiązań układu nierówności jest iloczynem rozwiązań (częścią wspólną) wszystkich zbiorów rozwiązań poszczególnych nierówności układu.

Graficzne rozwiązywanie układu nierówności

Układy nierówności najłatwiej rozwiązać graficznie.

Wystarczy wykreślić wykresy obu nierówności i zakreskować część wspólną obu zbiorów rozwiązań, tak jak to zrobiono dla poniższego przykładu.

Przykład Przykład

Rozwiąż graficznie układ nierówności

\begin{cases}x+y>0\\x-y<1\end{cases}

Wyznaczmy y z obu nierówności:

\begin{cases}y>-x\\-y<1-x/\cdot{(-1)}\end{cases}\\\begin{cases}y>-x\\y>x-1\end{cases}

Wykreślamy w układzie współrzędnych proste o równaniach: y=-x oraz y=x-1 i zaznaczamy obszary rozwiązań obu nierówności (na żółto y>-x i na niebiesko y>x-1). Rozwiązanie układu tych nierówności reprezentuje obszar będący częścią wspólną wcześniej zaznaczonych obszarów (zielonkawy kolor) . Ponieważ nierówności są ostre, punkty należące do prostych nie należą do wykresu układu nierówności.

Wykres funkcji y=3x

Zadania z rozwiązaniami

Zadanie nr 1.

Rozwiązać graficznie układ nierówności
\begin{cases}y<3x+1 \\ y<-3x+1 \\y>x-1 \end{cases}

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Dany jest układ nierówności
\begin{cases}x>-1 \\ x<1 \\y>-1\\ y<1 \end{cases}
Który z punktów:
A(0,0),
B(1,1),
C(0,-1),
należy do graficznego rozwiązania układu nierówności?

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Opisać za pomocą wzoru zbiór przedstawiony na rysunku, wiedząc, że punkty A, B i C mają całkowite współrzędne.
Układ nierówności graficznie

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Rozwiązać graficznie układ nierówności:
\begin{cases} x-y<1 \\ x+y\geq 1 \end{cases}

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Rozwiązać układ nierówności:
\begin{cases} \ \ 2y+x<1 \\ -2y-x<-2 \end{cases}

Pokaż rozwiązanie zadania.





© medianauka.pl, 2009-07-05, ART-261



Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
©® Media Nauka 2008-2023 r.