Logo Media Nauka
Sklep naukowy

Zadanie - trójkąt prostokątny

Jaką długość mają przyprostokątne trójkąta prostokątnego, jeżeli wiadomo, że jedna z przyprostokątnych jest 3 razy dłuższa od drugiej i średnica okręgu opisanego na tym trójkącie ma długość równą \sqrt{10}

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Sporządzamy szkic.

Okrąg opisany na trójkącie prostokątnym

Środek okręgu opisanego na trójkącie prostokątnym dzieli przeciwprostokątną na dwie równe części (promień tego okręgu to połowa przeciwprostokątnej). Powyższe wynika z twierdzenia, że trójkąt oparty na średnicy jest prostokątny. Nasza średnica d okręgu opisanego na trójkącie jest więc równa przeciwprostokątnej trójkąta prostokątnego.

Możemy skorzystać z twierdzenia Pitagorasa, które mówi, że w trójkącie prostokątnym kwadrat przeciwprostokątnej jest równy sumie kwadratów przyprostokątnych:

d^2=a^2+(3a)^2\\ d^2=a^2 +9a^2\\ d^2=10a^2/:10\\ a^2=\frac{d^2}{10} \\ a=\frac{(\sqrt{10})^2}{10}=\frac{10}{10}=1

Druga z przyprostokątnych jest trzy razy dłuższa, więc jej długość jest równa 3.

ksiązki Odpowiedź

Przyprostokątne mają długość 1 i 3

© medianauka.pl, 2011-02-08, ZAD-1136





Zadania podobne

kulkaZadanie - okrąg opisany na trójkącie
Na trójkącie prostokątnym o przyprostokątnych długości 3 i 4 opisano koło. Oblicz pole i obwód tego koła.

Pokaż rozwiązanie zadania

kulkaZadanie - suma miar kątów w tójkącie
W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30o. Oblicz miarę pozostałych kątów w tym trójkącie.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt prostokątny
W trójkącie prostokątnym miary dwóch kątów wewnętrznych są równe, a długość przeciwprostokątnej jest równa 6. Oblicz miarę kątów w tym trójkącie oraz długość boków.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt prostokątny, twierdzenie Pitagorasa
W trójkącie prostokątnym długości przyprostokątnych wynoszą odpowiednio 5 i 8. Oblicz długość przeciwprostokątnej.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt prostokątny
W trójkącie prostokątnym wysokość o długości 2\sqrt{2}opuszczona z wierzchołka kąta prostego dzieli podstawę na dwa odcinki, z których jeden jest dwa razy dłuższy od drugiego. Oblicz długości boków trójkąta.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt prostokątny
W równoramiennym trójkącie prostokątnym przyprostokątne mają długość 10 cm. Obliczyć długość promienia okręgu opisanego na tym trójkącie.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt prostokątny
Długość przeciwprostokątnej w trójkącie prostokątnym równoramiennym jest dwa razy większa od długości przyprostokątnej. Oblicz długości boków tego trójkąta.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt prostokątny
Znaleźć punkt na prostej y=1, który wraz z punktami A=(2,3), B=(4,2) wyznaczy trójkąt prostokątny.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 19, matura 2016 (poziom podstawowy)
Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).
wzór
Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe: A. 14
B. 2\sqrt{33}
C. 4\sqrt{33}
D. 12


Pokaż rozwiązanie zadania



© Media Nauka 2008-2018 r.