Zadanie - okrąg opisany na trójkącie
Rozwiązanie zadania uproszczone



Rozwiązanie zadania ze szczegółowymi wyjaśnieniami
Sporządzamy rysunek:

Kąt oparty na średnicy koła jest kątem prostym, zatem środek naszego koła leży na przeciwprostokątnej naszego trójkąta. Ponieważ środek okręgu opisanego na trójkącie leży na przecięciu symetralnych boków trójkąta, środek koła opisanego dzieli przeciwprostokątną trójkąta na dwie równe części. Korzystając z twierdzenia Pitagorasa mamy:

Obliczamy pole koła:

Obliczamy obwód okręgu:

Odpowiedź

© medianauka.pl, 2011-01-18, ZAD-1111
Zadania podobne

W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30o. Oblicz miarę pozostałych kątów w tym trójkącie.
Pokaż rozwiązanie zadania

W trójkącie prostokątnym miary dwóch kątów wewnętrznych są równe, a długość przeciwprostokątnej jest równa 6. Oblicz miarę kątów w tym trójkącie oraz długość boków.
Pokaż rozwiązanie zadania

W trójkącie prostokątnym długości przyprostokątnych wynoszą odpowiednio 5 i 8. Oblicz długość przeciwprostokątnej.
Pokaż rozwiązanie zadania

W trójkącie prostokątnym wysokość o długości

Pokaż rozwiązanie zadania

W równoramiennym trójkącie prostokątnym przyprostokątne mają długość 10 cm. Obliczyć długość promienia okręgu opisanego na tym trójkącie.
Pokaż rozwiązanie zadania

Jaką długość mają przyprostokątne trójkąta prostokątnego, jeżeli wiadomo, że jedna z przyprostokątnych jest 3 razy dłuższa od drugiej i średnica okręgu opisanego na tym trójkącie ma długość równą

Pokaż rozwiązanie zadania

Długość przeciwprostokątnej w trójkącie prostokątnym równoramiennym jest dwa razy większa od długości przyprostokątnej. Oblicz długości boków tego trójkąta.
Pokaż rozwiązanie zadania

Znaleźć punkt na prostej y=1, który wraz z punktami A=(2,3), B=(4,2) wyznaczy trójkąt prostokątny.
Pokaż rozwiązanie zadania

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).

Pole trójkąta, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe: A. 14
B.

C.

D. 12
Pokaż rozwiązanie zadania