logo

Reguła śruby prawoskrętnej

Reguła ta określa zwrot wektora będącego iloczynem wektorowym dwóch wektorów.

Jeżeli dany jest iloczyn wektorowy , to zwrot wektora \vec{c} ustalamy następująco:

  1. "Kręcimy" pierwszym wektorem z iloczynu wektorowego (tutaj \vec{a}) w kierunku drugiego (tutaj \vec{b}) w płaszczyźnie obu wektorów. Pamiętaj, że kolejność wektorów jest istotna!
  2. Następnie wyobrażamy sobie prostopadle do płaszczyzny wektorów \vec{a} i \vec{b} śrubę prawoskrętną i kręcimy nią w kierunku, w jakim obracaliśmy pierwszy z wektorów iloczynu wektorowego.
  3. Jeżeli śrubę wykręcamy (śruba porusza się ku górze), to zwrot wektora \vec{c} obieramy do góry.
  4. Jeżeli śrubę wkręcamy (śruba porusza się w dół), to zwrot wektora \vec{c} obieramy w dół.

Regułę tę wytłumaczymy na poniższej animacji:

Animacja

Animacja



Oznaczanie wektorów prostopadłych

Kartka papieru, ekran monitora są płaskie. Jak narysować wektor prostopadły do płaszczyzny na którą patrzymy? Stosujemy następujące oznaczenia:

\odot - oznacza wektor prostopadły do płaszczyzny na którą patrzysz, zwrócony do patrzącego,

- oznacza wektor prostopadły do płaszczyzny na którą patrzysz, zwrócony za tę płaszczyznę.



Inne zagadnienia z tej lekcji

Wektor

Wektor

Co to jest wektor? Jakie ma własności?

Współrzędne wektora

Współrzędne wektora

Jak wyznaczamy Współrzędne wektora? Co to jest o wektor jednostkowy?

Długość wektora

Długość wektora

Jak obliczyć długość dowolnego wektora?

Suma wektorów

Suma wektorów

Poznasz metodę trójkąta, metodę graficzną dodawania wektorów, dodawanie i odejmowanie wektorów równoległych.

Odejmowanie wektorów

Odejmowanie wektorów

Opis odejmowania wektorów równoległych i nierównoległych.

Iloczyn skalarny

Iloczyn skalarny

Co to jest iloczyn skalarny dwóch wektorów i jakie ma własności?

Mnożenie wektora przez liczbę

Mnożenie wektora przez liczbę

Definicja mnożenia wektora przez liczbę.

Iloczyn wektorowy

Iloczyn wektorowy

Iloczyn wektorowy - definicja i przykłady

Test wiedzy

Test wiedzy

Sprawdź swoje umiejętności z materiału zawartego w tej lekcji.




© medianauka.pl, 2017-02-11, ART-3468





Polecamy w naszym sklepie

Kolorowe skarpetki - kolorowe grochy
Kolorowe skarpetki - czarno-białe grochy
cyferki - gra - trefl
Krótka historia wielkich umysłów
Nowoczesne kompendium matematyki
Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
© ® Media Nauka 2008-2022 r.