Zadanie maturalne nr 19, matura 2014
A. 5
B. 7
C. 8
D. 10
Rozwiązanie zadania
Ostrosłup ma podstawę i tyle krawędzi bocznych ile krawędzi ma podstawa. Podstawą naszego ostrosłupa jest więc pięciokąt.
Ścian bocznych jest tyle, ile krawędzi podstawy, czyli 5 (spójrz na rysunek).
Odpowiedź
© medianauka.pl, 2017-02-04, ZAD-3442
Zadania podobne

Podstawą ostrosłupa prawidłowego trójkątnego ABCS jest trójkąt równoboczny ABC . Wysokość SO tego ostrosłupa jest równa wysokości jego podstawy. Objętość tego ostrosłupa jest równa 27. Oblicz pole powierzchni bocznej ostrosłupa ABCS oraz cosinus kąta, jaki tworzą wysokość ściany bocznej i płaszczyzna podstawy ostrosłupa.
Pokaż rozwiązanie zadania

W ostrosłupie prawidłowym czworokątnym ABCDS o podstawie ABCD wysokość jest równa 5, a kąt między sąsiednimi ścianami bocznymi ostrosłupa ma miarę 120°. Oblicz objętość tego ostrosłupa.
Pokaż rozwiązanie zadania

Podstawą ostrosłupa ABCDS jest kwadrat ABCD. Krawędź boczna SD jest wysokością ostrosłupa, a jej długość jest dwa razy większa od długości krawędzi podstawy. Oblicz sinus kąta między ścianami bocznymi ABS i CBS tego ostrosłupa.
Pokaż rozwiązanie zadania

Stożek i walec mają takie same podstawy i równe pola powierzchni bocznych. Wtedy tworząca stożka jest:
A. sześć razy dłuższa od wysokości walca
B. trzy razy dłuższa od wysokości walca.
C. dwa razy dłuższa od wysokości walca.
D. równa wysokości walca.
Pokaż rozwiązanie zadania

Podstawą ostrosłupa jest kwadrat KLMN o boku długości 4. Wysokością tego ostrosłupa jest
krawędź NS, a jej długość też jest równa 4 (zobacz rysunek).
Kąt α, jaki tworzą krawędzie KS i MS, spełnia warunek
- α=45°
- 45°<α<60°
- α>60°
- α=60°
Pokaż rozwiązanie zadania

Przekrój ostrosłupa prawidłowego trójkątnego ABCS płaszczyzną przechodzącą przez wierzchołek S i wysokości dwóch ścian bocznych jest trójkątem równobocznym. Krawędź boczna tego ostrosłupa ma długość 4√3/3. Oblicz objętość tego ostrosłupa.
Pokaż rozwiązanie zadania