Logo Media Nauka

Zadanie maturalne nr 14, matura 2017 (poziom podstawowy)


Jeśli m = sin50° , to
A. m = sin40°
B. m = cos40°
C. m = cos50°
D. m = tg50°

Skorzystamy ze wzoru redukcyjnego
\sin{(90^o-\alpha)}=\cos{\alpha}
Otrzymujemy:
sin(50°) = sin(90° - 40°) = cos(40°)
Odpowiedź B

© medianauka.pl, 2019-09-16, ZAD-3680

Zadania podobne

kulkaZadanie - wzory redukcyjne
Obliczyć:
a) sin30°,
b) cos3285°,
c) tg1125°,
d) ctg210°.

Pokaż rozwiązanie zadania

kulkaZadanie - wzory redukcyjne
Obliczyć:
a) sin(-45o)
b) ctg(-60o)
c) cos(-90o)


Pokaż rozwiązanie zadania

kulkaZadanie - wzory redukcyjne
Obliczyć:
a) sin120o
b) cos135o
c) cos240o
d) sin225o


Pokaż rozwiązanie zadania

kulkaZadanie - wzory redukcyjne
Obliczyć:
a) sin150o
b) tg120o


Pokaż rozwiązanie zadania

kulkaZadanie - wzory redukcyjne
Obliczyć:
a) sin960o
b) tg2115o
c) cos2760o


Pokaż rozwiązanie zadania

kulkaZadanie - wzory redukcyjne
Sprowadzić do prostszej postaci:
a)\ \sin{(180^o-x)}+\cos{(90^o+x)}\\ b)\ \cos{(\pi-x)}\sin{(\frac{\pi}{2}-x)}\\ c)\ tg{(270^o-x)}tg{(180^o+x)}

Pokaż rozwiązanie zadania

kulkaZadanie - wzory redukcyjne
Sprowadzić do prostszej postaci:
a)\ \sin{(-x)}-\cos{(270^o-x)}\\ b)\ \sin{(x-90^o)}\\ c)\ \cos{(x-\pi)}

Pokaż rozwiązanie zadania



Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
© Media Nauka 2008-2019 r.