Zadanie maturalne nr 4, matura 2022 - poziom rozszerzony


Dane są dwie urny z kulami. W każdej z urn jest siedem kul. W pierwszej urnie są jedna kula biała i sześć kul czarnych, w drugiej urnie są cztery kule białe i trzy kule czarne. Rzucamy jeden raz symetryczną monetą. Jeżeli wypadnie reszka, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku – jedną kulę z drugiej urny. Prawdopodobieństwo zdarzenia polegającego na tym, że wylosujemy kulę białą w tym doświadczeniu, jest równe

A. \(\frac{5}{14}\)

B. \(\frac{9}{14}\)

C. \(\frac{5}{7}\)

D. \(\frac{6}{7}\)


ksiązki Rozwiązanie zadania

Sporządzamy drzewo prawdopodobieństwa:

Zadanie 4 , matura 2022

Obliczamy prawdopodobieństwo wylosowania kuli białej:

\(P(A)=\frac{1}{2}\cdot\frac{1}{7}+\frac{1}{2}\cdot \frac{4}{7}=\frac{1}{14}+\frac{4}{14}=\frac{5}{14}\)

 

ksiązki Odpowiedź

Odpowiedź A

© medianauka.pl, 2023-04-27, ZAD-4882

Zadania podobne

kulkaZadanie - drzewo stochastyczne i prawdopodobieństwo
Z urny zawierającej 8 kul czarnych i 4 białych losujemy kolejno bez zwracania dwie kule. Jakie jest prawdopodobieństwo wylosowania:
a) dwóch takich samych kul,
b) dwóch różnych kul,
c) kuli białej, a potem czarnej.

Pokaż rozwiązanie zadania

kulkaZadanie - prawdopodobieństwo, drzewko stochastyczne
Jakie jest prawdopodobieństwo, że pośród wylosowanych trzech osób z klasy liczącej 25 osób znajduje się jedna dziewczyna i dwóch chłopców? W klasie jest 12 dziewcząt.

Pokaż rozwiązanie zadania

kulkaZadanie - prawdopodobieństwo, drzewko prawdopodobieństwa
Dwie firmy wyprodukowały łącznie 5000 butów, przy czym firma pierwsza wyprodukowała ich 2000. Wśród butów wyprodukowanych przez pierwszą firmę jest 80% sandałów, a przez drugą firmę 65% butów to sandały. Losujemy jedną parę butów. Jakie jest prawdopodobieństwo wylosowania sandałów?

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 11, matura 2015 (poziom rozszerzony)
W pierwszej urnie umieszczono 3 kule białe i 5 kul czarnych, a w drugiej urnie 7 kul białych i 2 kule czarne. Losujemy jedną kulę z pierwszej urny, przekładamy ją do urny drugiej i dodatkowo dokładamy do urny drugiej jeszcze dwie kule tego samego koloru, co wylosowana kula. Następnie losujemy dwie kule z urny drugiej. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że obie kule wylosowane z drugiej urny będą białe.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 8, matura 2017 (poziom rozszerzony)
W dwóch pudełkach umieszczono po pięć kul, przy czym w pierwszym pudełku: 2 kule białe i 3 kule czerwone, a w drugim pudełku: 1 kulę białą i 4 kule czerwone. Z pierwszego pudełka losujemy jedną kulę i bez oglądania wkładamy ją do drugiego pudełka. Następnie losujemy jedną kulę z drugiego pudełka. Oblicz prawdopodobieństwo wylosowania kuli białej z drugiego pudełka.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 30, matura 2020

Rzucamy dwa razy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że co najmniej jeden raz wypadnie ścianka z pięcioma oczkami.



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 3, matura 2020 - poziom rozszerzony

Mamy dwie urny. W pierwszej są 3 kule białe i 7 kul czarnych, w drugiej jest jedna kula biała i 9 kul czarnych. Rzucamy symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek, od jednego oczka do sześciu oczek. Jeśli w wyniku rzutu otrzymamy ściankę z jednym oczkiem, to losujemy jedną kulę z pierwszej urny, w przeciwnym przypadku — losujemy jedną kulę z drugiej urny. Wtedy prawdopodobieństwo wylosowania kuli białej jest równe

A. 2/15

B. 1/5

C. 4/5

D. 13/5



Pokaż rozwiązanie zadania




Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
©® Media Nauka 2008-2023 r.