Zadanie - nierówność algebraiczna
Rozwiązać nierówność \(\frac{(x-5)(x+2)}{x-1}> 0\).
Rozwiązanie zadania
Nierówność \(\frac{(x-5)(x+2)}{x-1}>\) jest równoważna nierówności:
\((x-5)(x+2)(x-1)>0\)
Dlaczego? Zauważmy, że badamy znak wyrażenia z lewej strony nierówności (badamy dla jakich wartości x ułamek jest dodatni). Kreska ułamkowa zastępuje dzielenie. Jeżeli dzielimy przez siebie pewne liczby, to otrzymamy wynik, którego znak będzie taki sam, jakbyśmy te same liczby pomnożyli przez siebie.
Po lewej stronie nierówności mamy wielomian rozłożony na czynniki. Bezpośrednio więc z postaci iloczynowej wielomianu odczytujemy pierwiastki wielomianu: \(-2, 1\), i \(5\). Sporządzamy siatkę znaków. Miejsca zerowe wyznaczają przedziały, które zapisujemy w kolumnach. W rzędach zapisujemy czynniki wielomianu. Ostatni wiersz, to znaki wielomianu. W kratkach zapisujemy znaki czynników dla wartości z poszczególnych przedziałów. Oto tabela:
\(x\) | \((-\infty-2)\) | \(-2\) | \((-2;1)\) | \(1\) | \((1;5)\) | \(5\) | \((5;+\infty)\) |
\(x-5\) | - | - | - | - | - | 0 | + |
\(x-1\) | - | - | - | 0 | + | + | + |
\(x+2\) | - | 0 | + | + | + | + | + |
\(W(x)\) | - | 0 | + | 0 | - | 0 | + |
Jak sprawdzić znak czynnika dla danego przedziału? Wystarczy dowolną liczbę z danego przedziału podstawić za niewiadomą i obliczyć wynik. Znak wyniku wpisujemy do kratki tabeli (np. dla pierwszej kratki znak ustalamy w następujący sposób: weźmy dowolną liczbę z przedziału \((-\infty;-2)\), niech to będzie \(-3\) i podstawmy do czynnika wielomianu \(x-5\) i otrzymujemy wynik \(-7\), a więc ujemny. Znak "-" wpisujemy do odpowiedniej kratki).
Szukamy znaku wielomianu. Wystarczy pomnożyć przez siebie w kolumnie jedności ze znakami z poszczególnych kratek (np. dla pierwszej kolumny \((-1)\cdot (-1)\cdot (-1)=-1\), więc znak "-" wpisujemy w ostatnią kratkę pierwszej kolumny). Bezpośrednio z tabeli odczytujemy rozwiązanie. Interesują nas te przedziały, dla których wielomian \(W(x)\) jest większy od zera.
Odpowiedź
© medianauka.pl, 2010-01-25, ZAD-542
Zadania podobne

Rozwiązać nierówność:
a) \(x(x-2)(x-1)(x+3)(x+4)\geq 0\),
b) \(x^2(x-2)^2(x-1)^4(x+3)^5(x+4)\leq 0\).
Pokaż rozwiązanie zadania

Rozwiązać nierówność \((x-4)(x+3)(x^4+1)(x-x^2-3)>0\).
Pokaż rozwiązanie zadania

Rozwiązać nierówność \(x^4+8x^3-3x^2-26x-16\geq 0\).
Pokaż rozwiązanie zadania

Rozwiąż nierówność: \(\frac{x^4-2x^2+1}{x^2-2}\leq 0\).
Pokaż rozwiązanie zadania

Rozwiązać nierówność \(\frac{x^3+9}{x^2-9}< x-1\).
Pokaż rozwiązanie zadania

Dla jakich wartości parametru \(m\) suma odwrotności pierwiastków równania \(x^2-2(m+1)x+(m^2+3m-18)=0\) ma wartość ujemną?
Pokaż rozwiązanie zadania

Liczba \(\frac{2}{5}\) jest pierwiastkiem wielomianu \(W(x)=5x^3−7x^2−3x+p\). Wyznacz pozostałe pierwiastki tego wielomianu i rozwiąż nierówność \(W(x)>0\).
Pokaż rozwiązanie zadania

Wyznacz wszystkie wartości parametru \(m\), dla których równanie \(x^2 + (m+1)x−m^2+1=0\) ma dwa rozwiązania rzeczywiste \(x_1\) i \(x_2\) \((x_1\neq x_2)\), spełniające warunek \(x^3_1+x^3_2>−7x_1x_2\).
Pokaż rozwiązanie zadania

Reszta z dzielenia wielomianu \(W(x)=4x^3-6x^2-(5m+1)x-2m\) przez dwumian \(x+2\) jest równa (−30). Oblicz \(m\) i dla wyznaczonej wartości \(m\) rozwiąż nierówność \(W(x)\geq 0\).
Pokaż rozwiązanie zadania