Zadanie - równanie okręgu
Treść zadania:
Znaleźć równanie okręgu opisanego na trójkącie równobocznym, wyznaczonym przez punkty \(A=(1,1), B=(5,1), C=(3,2\sqrt{3}+1)\).
Rozwiązanie zadania
Sporządzamy szkic:

Równanie okręgu o środku \(O=(x_s, y_s)\) i promieniu r jest dane wzorem:
Musimy więc znaleźć współrzędne środka okręgu oraz jego promień. Ponieważ mamy do czynienia z okręgiem opisanym na trójkącie równobocznym, środek okręgu dzieli wysokość trójkąta na trzy równe części, więc:
\(r=\frac{2}{3}h\)
Wysokość trójkąta można wyznaczyć, znając długość boku. Długość boku można obliczyć na podstawie wzoru na odległość między dwoma punktami w układzie współrzędnych:
Mamy więc dla punktów \(A\) i \(B\):
\(A=(1,1), \ B=(5,1)\)
\(|AB|=a=\sqrt{(5-1)^2+(1-1)^2}=4\0
Obliczamy wysokość trójkąta, korzystając z twierdzenia Pitagorasa:
\(h^2+(\frac{1}{2}a)^2=a^2\)
\(h^2=\frac{3}{4}a^2\)
\(h=\frac{\sqrt{3}}{2}a\)
\(a=4\)
\(h=\frac{\sqrt{3}}{2} \cdot 4=2\sqrt{3}\)
a następnie promień:
\(r=\frac{2}{3}h=\frac{2}{3}\cdot 2\sqrt{3}=\frac{4\sqrt{3}}{3}\)
Aby wyznaczyć współrzędne środka okręgu posłużymy się wiedzą na temat środka okręgu opisanego na trójkącie, który leży na przecięciu się symetralnych boków trójkąta. Zatem współrzędna x środka okręgu jest taka sama jak współrzędna x środka odcinka AB. Środek odcinka wyznaczonego przez punkty w układzie współrzędnych obliczamy ze wzoru:
Mamy więc:
\(x_s=x_O=\frac{1+5}{2}=3\)
Środek okręgu leży o 1/3 wysokości nad podstawą trójkąta AB, która leży na prostej \(y=1\). Współrzędna \(y\) środka okręgu spełnia więc zależność:
\(y_s=1+\frac{1}{3}h=1+\frac{1}{3}\cdot 2\sqrt{3}=1+\frac{2\sqrt{3}}{3}\)
Mamy już wszystkie dane, aby napisać równanie okręgu:
\((x-x_s)^2+(y-y_s)^2=r^2\)
\((x-3)^2+(y-1-\frac{2\sqrt{3}}{3})^2=(\frac{4\sqrt{3}}{3})^2=\frac{16\cdot 3}{9}=\frac{16}{3}\)
Odpowiedź
© medianauka.pl, 2011-01-18, ZAD-1112


Zadania podobne
Zadanie nr 1.
Na trójkącie równobocznym o boku \(a=1\) opisano okrąg. Oblicz obwód tego okręgu i pole koła wyznaczonego przez ten okrąg.
Zadanie nr 2.
W trójkąt równoboczny o boku długości \(a=1\) wpisano koło. Oblicz jego pole i obwód.
Zadanie nr 3.
Dane są punkty \(A=(1,1), B=(4,-2)\). Znajdź punkt \(C\), który jest wierzchołkiem trójkąta równobocznego \(ABC\).
Zadanie nr 4.
Dany jest trójkąt równoboczny o boku \(a\). Środki boków tego trójkąta dzielą dany trójkąt na mniejsze części. Oblicz wysokość mniejszego trójkąta leżącego w środku danego trójkąta.
Zadanie nr 5.
W trójkąt równoboczny o boku długości 2 wpisano kwadrat o polu 1. Oblicz wysokość trójkąta równoramiennego, wyznaczonego przez ten kwadrat.
Zadanie nr 6.
Dany jest trójkąt równoboczny o boku a. Środki boków tego trójkąta dzielą dany trójkąt na mniejsze części. Wykaż, że wszystkie mniejsze trójkąty są przystające i są trójkątami równobocznymi.

Zadanie nr 7 — maturalne.
Pole pewnego trójkąta równobocznego jest równe \(\frac{4\sqrt{3}}{9}\). Obwód tego trójkąta jest równy
A. 4
B. 2
C. \(\frac{4}{3}\)
D. 2/3

Zadanie nr 8 — maturalne.
Wysokość trójkąta równobocznego jest równa \(6\sqrt{3}\). Pole tego trójkąta jest równe
A. \(3\sqrt{3}\)
B. \(4\sqrt{3}\)
C. \(27\sqrt{3}\)
D. \(36\sqrt{3}\)