Zadanie maturalne nr 17, matura 2016 (poziom podstawowy)


Kąt alfa jest ostry i tg{\alpha}=\frac{2}{3}. Wtedy:

A. sin{\alpha}=\frac{3\sqrt{13}}{26}
B. sin{\alpha}=\frac{\sqrt{13}}{13}
C. sin{\alpha}=\frac{2\sqrt{13}}{13}
D. sin{\alpha}=\frac{3\sqrt{13}}{13}

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Skorzystamy z funkcji trygonometrycznych kata ostrego: funkcje trygonometryczne kąta ostrego w trójkącie

tg{\alpha}=\frac{przyprostokatna\ przeciwlegla}{przyprostokatna\  przylegla}=\frac{a}{b}


Ponieważ tangens kąta ostrego u nas jest równy 2/3, z treści zadania wynika więc, że :

a=2, b=3

Przypomnę, że definicja sinusa kata ostrego jest następująca:

\sin{\alpha}=\frac{przyprostokatna\ przeciwlegla}{przeciwprostokatna}=\frac{a}{c}

Nie mamy danej długości przeciwprostokątnej c. Możemy ją znaleźć, korzystając z twierdzenia Pitagorasa:

rysunek pomocniczy
2^2+3^2=x^2 \\ x^2=13 \\ x=\sqrt{13}

Obliczamy więc sinus kąta i pozbywamy się niewymierności z mianownika:

sin{\alpha}=\frac{a}{c}=\frac{2}{\sqrt{13}}=\frac{2\sqrt{13}}{\sqrt{13}\sqrt{13}}=\frac{2\sqrt{13}}{13}

ksiązki Odpowiedź

Odpowiedź C

© medianauka.pl, 2016-11-01, ZAD-3241


Zadania podobne

kulkaZadanie - funkcje trygonometryczne
Dany jest trójkąt równoramienny o podstawie długości a, ramionach długości b, kątami wewnętrznymi przy podstawie trójkąta \beta oraz \alpha przy wierzchołku trójkąta z którego opada wysokość h na podstawę trójkąta. Zapisać podstawowe funkcje trygonometryczne dla katów: \beta, \frac{\alpha}{2}.

Pokaż rozwiązanie zadania

kulkaZadanie - funkcje trygonometryczne
Dany jest trójkąt prostokątny równoramienny o przyprostokątnej długości a=\sqrt{2}. Oblicz długość podstawy korzystając z funkcji trygonometrycznych.

Pokaż rozwiązanie zadania

kulkaZadanie - funkcje trygonometryczne
Obliczyć długość podstawy prostokąta, jeżeli przekątna o długości d=2\sqrt{3} tworzy z podstawą kąt \alpha=30^o.

Pokaż rozwiązanie zadania

kulkaZadanie - funkcje trygonometryczne
Obliczyć promień R okręgu opisanego na sześciokącie foremnym, jeżeli wiadomo, że długość promienia wpisanego w ten wielokąt r=2.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 13, matura 2016 (poziom podstawowy)
ilustracja do zadania 13 , matura 2016W okręgu o środku w punkcie S poprowadzono cięciwę AB, która utworzyła z promieniem AS kąt o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu S od cięciwy AB jest liczbą z przedziału

A. a
B. b
C. c
D. d


Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 23, matura 2016 (poziom podstawowy)
Kąt rozwarcia stożka ma miarę 120°, a tworząca tego stożka ma długość 4. Objętość tego stożka jest równa

A. 36π
B. 18π
C. 24π
D. 8π


Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 24, matura 2016 (poziom podstawowy)
Przekątna podstawy graniastosłupa prawidłowego czworokątnego jest dwa razy dłuższa od wysokości graniastosłupa. Graniastosłup przecięto płaszczyzną przechodzącą przez przekątną podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).
Ilustracja do zadania nr 24, matura z matematyki 2016, poziom podstawowy
Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze
A. 30°
B. 45°
C. 60°
D. 75°


Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 14, matura 2015 (poziom podstawowy)
Tangens kąta α zaznaczonego na rysunku jest równy:
wzór

A. wzór
B. -4/5
C. -1
D. -5/4


Pokaż rozwiązanie zadania



Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
© Media Nauka 2008-2018 r.