Zadanie maturalne nr 33, matura 2022
Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Dwusieczna kąta BAC przecina bok BC w takim punkcie D, że trójkąty ABC i BDA są podobne (zobacz rysunek). Oblicz miarę kąta BAC.
Rozwiązanie zadania
Dwusieczna kąta CAB dzieli go na dwa równe kąty, oznaczmy ich miarę przez \(\alpha\). Ponieważ trójkąt ABC jest równoramienną, kąt ABC również ma miarę \(\alpha\).
Ponieważ trójkąty ABC i ABD są podobne, więc kąt ABD ma miarę \(2\alpha\). Suma kątów wewnętrznych w trójkącie jest równa 180°, zatem:
\(2\alpha+2\alpha+\alpha=180°\)
\(5\alpha=180°/:5\)
\(\alpha=36°\)
\(|\angle BAS|=2\cdot 36°=72°\)
Odpowiedź
© medianauka.pl, 2023-04-26, ZAD-4876
Zadania podobne

Przedstawione na rysunku trójkąty ABC i PQR są podobne. Bok AB trójkąta ABC ma długość

A. 8
B. 8,5
C. 9,5
D. 10
Pokaż rozwiązanie zadania

Dany jest trójkąt prostokątny ABC. Na przyprostokątnych AC i AB tego trójkąta obrano odpowiednio punkty D i G. Na przeciwprostokątnej BC wyznaczono punkty E i F takie, że |∠DEC|=|∠BGF|=90° (zobacz rysunek). Wykaż, że trójkąt CDE jest podobny do trójkąta FBG.

Pokaż rozwiązanie zadania

Jeżeli trójkąty ABC i A'B'C' są podobne, a ich pola są, odpowiednio, równe 25 cm2 i 50 cm2, to skala podobieństwa A'B'/AB jest równa:
A. 2
B. 1/2
C.

D.

Pokaż rozwiązanie zadania

W trójkącie ABC punkt D leży na boku BC, a punkt E leży na boku AB. Odcinek DE jest równoległy do boku AC, a ponadto |BD| =10 , |BC| =12 i |AC| = 24 (zobacz rysunek).
A. m = 22
B. m = 20
C. m = 12
D. m = 11
Długość odcinka DE jest równa

Pokaż rozwiązanie zadania

Dany jest trójkąt o bokach długości: 2√5, 3√5, 4√5. Trójkątem podobnym do tego trójkąta
jest trójkąt, którego boki mają długości
- 10, 15, 20
- 20, 45, 80
- √2, √3, √4
- √5, 2√5, 3√5
Pokaż rozwiązanie zadania

Dane są dwa okręgi: okrąg o środku w punkcie O i promieniu 5 oraz okrąg o środku w punkcie P i promieniu 3. Odcinek OP ma długość 16. Prosta AB jest styczna do tych okręgów w punktach A i B. Ponadto prosta AB przecina odcinek OP w punkcie K (zobacz rysunek).
Wtedy
A. |OK|=6
B. |OK|=8
C. |OK|=10
D. |OK|=12
Pokaż rozwiązanie zadania

Trójkąt ABC jest równoboczny. Punkt E leży na wysokości CD tego trójkąta oraz |CE|=3/4|CD|. Punkt F leży na boku BC i odcinek EF jest prostopadły do BC (zobacz rysunek).
Wykaż, że |CF|=9/16|CB|
Pokaż rozwiązanie zadania

Trójkąt równoboczny ABC ma pole równe 9√3. Prosta równoległa do boku BC przecina boki AB i AC – odpowiednio – w punktach K i L. Trójkąty ABC i AKL są podobne, a stosunek długości boków tych trójkątów jest równy 3/2. Oblicz długość boku trójkąta AKL.
Pokaż rozwiązanie zadania