Logo Media Nauka

Zadanie - kombinacje, obliczanie kombinacji - zadanie z treścią

Na ile sposobów można wybrać trzyosobową delegację złożoną z jednej dziewczyny i dwóch chłopców z klasy liczącej 15 chłopców i 15 dziewcząt?

ksiązki Rozwiązanie zadania uproszczone

C_{15}^1\cdot C_{15}^2={15\choose 1}\cdot {15\choose 2}=\\ =\frac{15!}{1!(15-1)!}\cdot \frac{15!}{2!(15-2)!}=\frac{\cancel{14!} \cdot 15}{\cancel{14!}}\cdot \frac{\cancel{13!}\cdot 14 \cdot 15}{2\cdot \cancel{13!}}=1575

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

W tym przypadku dokonujemy dwóch losowań. Mamy więc jeden zbiór 15-elementowy dziewcząt i 15-elementowy zbiór chłopców. Wybieramy jedną uczennicę z jednego zbioru i dwóch chłopców z drugiego zbioru do delegacji (czyli k=1 w przypadku dziewcząt i k=2 w przypadku chłopców). Kolejność wyboru uczniów nie ma znaczenia. Uczniowie nie mogą się powtarzać (musimy wybrać różnych uczniów), więc tworzymy kombinacje jednoelementowe w przypadku dziewcząt i dwuelementowe w przypadku chłopców zbioru 15-elementowego w obu przypadkach. (Spójrz na tabelę, w której zestawiono permutacje, kombinacje i wariacje.)

Jak połączyć ze sobą te dwie kombinacje? Musimy pomnożyć je przez siebie, aby otrzymać wynik. Dlaczego pomnożyć? Załóżmy, że wybraliśmy pierwszą dziewczynę ze zbioru dziewcząt do delegacji i dalej stosujemy wszystkie możliwe kombinacje chłopców. Wybieramy kolejną dziewczynę i dopełniamy delegację tymi samymi kombinacjami zbioru chłopców i tak dalej tyle razy, ile razy wybieramy dziewczynę ze zbioru dziewcząt.
Liczbę możliwości wyboru delegacji obliczymy następująco:

C_{15}^1\cdot C_{15}^2={15\choose 1}\cdot {15\choose 2}=\\ =\frac{15!}{1!(15-1)!}\cdot \frac{15!}{2!(15-2)!}=\frac{\cancel{14!} \cdot 15}{\cancel{14!}}\cdot \frac{\cancel{13!}\cdot 14 \cdot 15}{2\cdot \cancel{13!}}=1575

ksiązki Odpowiedź

Delegację trzyosobową, w której jedna osoba to dziewczyna, a dwie to chłopcy można wybrać na 1575 sposobów.

© medianauka.pl, 2010-01-11, ZAD-507



Zadania podobne

kulkaZadanie - permutacje, obliczanie permutacji
Ile liczb pięciocyfrowych o różnych cyfrach można utworzyć z cyfr 1,2,3,4,5?

Pokaż rozwiązanie zadania

kulkaZadanie - permutacje - zadanie z treścią - kombinatoryka
W wyścigu chartów bierze udział sześć psów. Zakład polega na wytypowaniu właściwej kolejności psów na mecie (przy założeniu, że wszystkie dobiegają do mety i nie ma remisu). Ile zakładów trzeba zawrzeć, aby mieć pewność wygranej?

Pokaż rozwiązanie zadania

kulkaZadanie - permutacje - zadanie z treścią - kombinatoryka
Z ilu elementów składa się zbiór A, jeżeli liczba jego permutacji jest 20 razy mniejsza od liczby permutacji tego samego zbioru uzupełnionego o dwa dodatkowe elementy?

Pokaż rozwiązanie zadania

kulkaZadanie - permutacje - zadanie z treścią - kombinatoryka
Malarz chce namalować tęcze z wykorzystaniem wszystkich możliwych konfiguracji kolejności występowania jej siedmiu podstawowych kolorów. Ile tęcz malarz musi namalować?

Pokaż rozwiązanie zadania

kulkaZadanie - kombinacje - zadanie z treścią - kombinatoryka
Ile dróg trzeba zbudować, aby połączyć ze sobą dziesięć miejscowości, każda z każdą?

Pokaż rozwiązanie zadania

kulkaZadanie - kombinacje, obliczanie kombinacji - zadanie z treścią - kombinatoryka
Ile przekątnych znajduje się w wielokącie foremnym o n bokach?

Pokaż rozwiązanie zadania

kulkaZadanie - kombinacje, obliczanie kombinacji - zadanie z treścią
Na ile sposobów można wybrać pięcioosobową delegację z klasy liczącej 30 uczniów?

Pokaż rozwiązanie zadania

kulkaZadanie - kombinacje, obliczanie kombinacji - kombinatoryka - zadanie z treścią
Na ile sposobów można wybrać trzyosobową delegację złożoną z co najmniej dwóch chłopców z klasy liczącej 16 chłopców i 14 dziewcząt?

Pokaż rozwiązanie zadania

kulkaZadanie - kombinacje, oblicanie kombinacji - zadanie z treścią - kombinatoryka
W trzech stosach znajdują się karteczki z obrazkami. W pierwszym stosie znajduje się 10 obrazków głów, w drugim - 20 obrazków tułowia, w trzecim - 10 obrazków ilustrujących odnóża. Losujemy jedną kartkę z głową, dwie z tułowiem i jedną z odnóżami. Układamy kartki jedna pod drugą, tworząc obrazek stworka. Ile różnych stworków możemy w ten sposób utworzyć?

Pokaż rozwiązanie zadania

kulkaZadanie - kombinacje - równanie
Rozwiązać równanie: C_{x+2}^{2}=1

Pokaż rozwiązanie zadania

kulkaZadanie - kombinatoryka - tworzenie liczb - zadanie z treścią
a) Ile można utworzyć liczb z cyfr 1, 2, 3, 4, używając każdej z cyfr tylko raz?
b) Ile liczb co najwyżej czterocyfrowych można utworzyć z cyfr 1,2,3,4?
c) Ile liczb czterocyfrowych można utworzyć z cyfr 0, 1, 2, 3?

Pokaż rozwiązanie zadania

kulkaZadanie - wariacje bez powtórzeń - zadanie z treścią
Ile słów czteroliterowych (niekoniecznie mających znaczenie) można utworzyć z 32 liter alfabetu, używając każdej z liter tylko raz?

Pokaż rozwiązanie zadania

kulkaZadanie - wariacje bez powtórzeń
W wyścigu bierze udział 10 koni. Zakład polega na właściwym wytypowaniu kolejności pierwszych trzech koni na mecie. Ile jest różnych możliwych zakładów przy założeniu, że konie nie przybiegają na metę jednocześnie?

Pokaż rozwiązanie zadania

kulkaZadanie - wariacje - zadanie z treścią - informatyka
Komputer jest zabezpieczony hasłem, które składa się z ośmiu znaków i w jego skład może wchodzić każda z 10 cyfr, 32 liter alfabetu (mała i duża) oraz 26 znaków specjalnych? Ile może trwać łamanie hasła poprzez manualne wpisywanie kolejnych możliwych haseł, jeśli jedno hasło wpisujemy 1 s?

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 14, matura 2016 (poziom rozszerzony)
Rozpatrujemy wszystkie liczby naturalne dziesięciocyfrowe, w zapisie których mogą występować wyłącznie cyfry 1, 2, 3, przy czym cyfra 1 występuje dokładnie trzy razy. Uzasadnij, że takich liczb jest 15 360.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 24, matura 2014
Na ile sposobów można wybrać dwóch graczy spośród 10 zawodników?

A. 100
B. 90
C. 45
D. 20

Pokaż rozwiązanie zadania



© Media Nauka 2008-2018 r.