Logo Serwisu Media Nauka

zadanie

Zadanie - kombinacje, oblicanie kombinacji - zadanie z treścią - kombinatoryka


W trzech stosach znajdują się karteczki z obrazkami. W pierwszym stosie znajduje się 10 obrazków głów, w drugim - 20 obrazków tułowia, w trzecim - 10 obrazków ilustrujących odnóża. Losujemy jedną kartkę z głową, dwie z tułowiem i jedną z odnóżami. Układamy kartki jedna pod drugą, tworząc obrazek stworka. Ile różnych stworków możemy w ten sposób utworzyć?


ksiązki Rozwiązanie zadania uproszczone

C_{10}^1\cdot C_{20}^2\cdot C_{10}^{1}={10\choose 1}\cdot {20\choose 2}\cdot {10\choose 1}=\\ =\frac{10!}{1!(10-1)!}\cdot \frac{20!}{2!(20-2)!}+\frac{10!}{1!(10-1)!}=\\ =\frac{\cancel{9!} \cdot 10}{\cancel{9!}}\cdot \frac{\cancel{18!}\cdot 19 \cdot 20}{2\cdot \cancel{18!}}\cdot \frac{\cancel{9!}\cdot 10}{\cancel{9!}}=10\cdot 190\cdot 10=19000

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Dokonujemy trzech losowań. Mamy więc jeden zbiór 10-elementowy obrazków z głowami (n=10), 20-elementowy z tułowiem (n=20) i 10-elementowy zbiór obrazków (n=10) z odnóżami. Wybieramy w pierwszym i trzecim przypadku po jednym elemencie ze zbioru z kartkami (k=1) oraz w drugim przypadku dwa elementy ze zbioru kartek z obrazkami tułowia (k=2).

Kolejność wyboru kartek w każdym z trzech losowań nie ma znaczenia, ponieważ losujemy albo tylko jedną kartkę, a gdy losujemy dwie, nie ustalamy ich kolejności. Istotne jest natomiast, że obrazki nie mogą się powtarzać.

Tworzymy więc kombinacje k-elementowe zbioru n-elementowego w każdym z trzech przypadków.
(Spójrz na tabelę, w której zestawiono permutacje, kombinacje i wariacje w zależności od różnych warunków zagadnienia.)

Jak połączyć ze sobą te trzy kombinacje? Musimy pomnożyć je przez siebie, aby otrzymać wynik. Dlaczego pomnożyć? Załóżmy, że wybraliśmy pierwszą kartkę. Dobieramy wszystkie pozostałe możliwe kombinacje drugiego zbioru tyle razy ile jest kombinacji pierwszego zbioru i tak dalej w odniesieniu do drugiego i trzeciego zbioru.

Liczbę możliwych do utworzenia różnych stworków obliczymy następująco:

C_{10}^1\cdot C_{20}^2\cdot C_{10}^{1}={10\choose 1}\cdot {20\choose 2}\cdot {10\choose 1}=\\ =\frac{10!}{1!(10-1)!}\cdot \frac{20!}{2!(20-2)!}+\frac{10!}{1!(10-1)!}=\\ =\frac{\cancel{9!} \cdot 10}{\cancel{9!}}\cdot \frac{\cancel{18!}\cdot 19 \cdot 20}{2\cdot \cancel{18!}}\cdot \frac{\cancel{9!}\cdot 10}{\cancel{9!}}=10\cdot 190\cdot 10=19000

ksiązki Odpowiedź

Można utworzyć 19000 różnych stworków.

© medianauka.pl, 2010-01-12, ZAD-509




Zadania podobne

kulkaZadanie - permutacje, obliczanie permutacji
Ile liczb pięciocyfrowych o różnych cyfrach można utworzyć z cyfr 1,2,3,4,5?


kulkaZadanie - permutacje - zadanie z treścią - kombinatoryka
W wyścigu chartów bierze udział sześć psów. Zakład polega na wytypowaniu właściwej kolejności psów na mecie (przy założeniu, że wszystkie dobiegają do mety i nie ma remisu). Ile zakładów trzeba zawrzeć, aby mieć pewność wygranej?


kulkaZadanie - permutacje - zadanie z treścią - kombinatoryka
Z ilu elementów składa się zbiór A, jeżeli liczba jego permutacji jest 20 razy mniejsza od liczby permutacji tego samego zbioru uzupełnionego o dwa dodatkowe elementy?


kulkaZadanie - permutacje - zadanie z treścią - kombinatoryka
Malarz chce namalować tęcze z wykorzystaniem wszystkich możliwych konfiguracji kolejności występowania jej siedmiu podstawowych kolorów. Ile tęcz malarz musi namalować?


kulkaZadanie - kombinacje - zadanie z treścią - kombinatoryka
Ile dróg trzeba zbudować, aby połączyć ze sobą dziesięć miejscowości, każda z każdą?


kulkaZadanie - kombinacje, obliczanie kombinacji - zadanie z treścią - kombinatoryka
Ile przekątnych znajduje się w wielokącie foremnym o n bokach?


kulkaZadanie - kombinacje, obliczanie kombinacji - zadanie z treścią
Na ile sposobów można wybrać pięcioosobową delegację z klasy liczącej 30 uczniów?


kulkaZadanie - kombinacje, obliczanie kombinacji - zadanie z treścią
Na ile sposobów można wybrać trzyosobową delegację złożoną z jednej dziewczyny i dwóch chłopców z klasy liczącej 15 chłopców i 15 dziewcząt?


kulkaZadanie - kombinacje, obliczanie kombinacji - kombinatoryka - zadanie z treścią
Na ile sposobów można wybrać trzyosobową delegację złożoną z co najmniej dwóch chłopców z klasy liczącej 16 chłopców i 14 dziewcząt?


kulkaZadanie - kombinacje - równanie
Rozwiązać równanie: C_{x+2}^{2}=1


kulkaZadanie - kombinatoryka - tworzenie liczb - zadanie z treścią
a) Ile można utworzyć liczb z cyfr 1, 2, 3, 4, używając każdej z cyfr tylko raz?
b) Ile liczb co najwyżej czterocyfrowych można utworzyć z cyfr 1,2,3,4?
c) Ile liczb czterocyfrowych można utworzyć z cyfr 0, 1, 2, 3?


kulkaZadanie - wariacje bez powtórzeń - zadanie z treścią
Ile słów czteroliterowych (niekoniecznie mających znaczenie) można utworzyć z 32 liter alfabetu, używając każdej z liter tylko raz?


kulkaZadanie - wariacje bez powtórzeń
W wyścigu bierze udział 10 koni. Zakład polega na właściwym wytypowaniu kolejności pierwszych trzech koni na mecie. Ile jest różnych możliwych zakładów przy założeniu, że konie nie przybiegają na metę jednocześnie?


kulkaZadanie - wariacje - zadanie z treścią - informatyka
Komputer jest zabezpieczony hasłem, które składa się z ośmiu znaków i w jego skład może wchodzić każda z 10 cyfr, 32 liter alfabetu (mała i duża) oraz 26 znaków specjalnych? Ile może trwać łamanie hasła poprzez manualne wpisywanie kolejnych możliwych haseł, jeśli jedno hasło wpisujemy 1 s?


kulkaZadanie maturalne nr 14, matura 2016 (poziom rozszerzony)
Rozpatrujemy wszystkie liczby naturalne dziesięciocyfrowe, w zapisie których mogą występować wyłącznie cyfry 1, 2, 3, przy czym cyfra 1 występuje dokładnie trzy razy. Uzasadnij, że takich liczb jest 15 360.


kulkaZadanie maturalne nr 24, matura 2014
Na ile sposobów można wybrać dwóch graczy spośród 10 zawodników?

A. 100
B. 90
C. 45
D. 20



Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza

Analiza

Geometria

Geometria

Prawdopodobieństwo

Probabilistyka



Polecamy koszyk


© Media Nauka 2008-2017 r.