Zadanie - trójkąty, znajdowanie długości boków
Rozwiązanie zadania ze szczegółowymi wyjaśnieniami
Sporządzamy szkic.

Wysokość trójkąta h dzieli trójkąt na dwa trójkąty prostokątne. Możemy więc zastosować funkcję trygonometryczną: sinus, który jest równy stosunkowi długości przyprostokątnej leżącej naprzeciw kąta do długości przeciwprostokątnej.

Jeżeli teraz skorzystamy dwukrotnie z twierdzenia Pitagorasa możemy wyznaczyć x oraz y, których suma składa się na długość trzeciego boku trójkąta - podstawy. Rozpatrujemy więc pierwszy z lewej trójkąt prostokątny:

oraz drugi z trójkątów prostokątnych:

Długość podstawy wynosi:

Odpowiedź

© medianauka.pl, 2011-02-01, ZAD-1131
Zadania podobne

Dany jest trójkąt o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2). Oblicz długość wysokości tego trójkąta opuszczonej z wierzchołka C.
Pokaż rozwiązanie zadania

Znaleźć środek ciężkości w trójkącie o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2).
Pokaż rozwiązanie zadania

Oblicz wysokość w trójkącie równoramiennym o ramionach długości 10 i podstawie długości 12.
Pokaż rozwiązanie zadania

W trójkącie równoramiennym o ramionach długości 5 wysokość ma długość 4. Oblicz długość podstawy.
Pokaż rozwiązanie zadania

W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30o. Oblicz miarę pozostałych kątów w tym trójkącie.
Pokaż rozwiązanie zadania

W trójkącie ABC dwa kąty wewnętrzne mają miarę 30o. Długość podstawy jest równa 12. Oblicz długości pozostałych boków trójkąta.
Pokaż rozwiązanie zadania

Czy długość podstawy trójkąta równoramiennego może być dwa razy większa od długości ramienia tego trójkąta?
Pokaż rozwiązanie zadania

Z odcinków o długościach: 5, 2a+1, a-1 można zbudować trójkąt równoramienny. Wynika stąd, że
A. a=6
B. a=4
C. a=3
D. a=2
Pokaż rozwiązanie zadania

Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50°. Oblicz kąty tego trójkąta.
Pokaż rozwiązanie zadania

W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz ∠ABC = β . Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E. Wykaż, że długość odcinka BE jest równa

Pokaż rozwiązanie zadania

Korzystając z własności działań na pierwiastkach lub potęgach oblicz:
Pokaż rozwiązanie zadania

Dany jest czworokąt wypukły ABCD, w którym |AD|=|AB|=|BC|=a, |∠BAD|=60° i |∠ADC|=135°. Oblicz pole czworokąta ABCD.
Pokaż rozwiązanie zadania

Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Na ramieniu AC tego trójkąta wybrano punkt M (M ≠ A i M ≠ C ), a na ramieniu BC wybrano punkt N, w taki sposób, że |AM| = |CN|. Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T. Udowodnij, że |ST| = 1/2|AB|.
Pokaż rozwiązanie zadania