Logo Serwisu Media Nauka

zadanie

Zadanie - trójkąt równoramienny


Czy długość podstawy trójkąta równoramiennego może być dwa razy większa od długości ramienia tego trójkąta?


ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Sporządzamy szkic.

Trójkąt równoramienny

Wysokość dzieli trójkąt równoramienny na dwa trójkąty prostokątne. Możemy skorzystać z twierdzenia Pitagorasa, które mówi, że w trójkącie prostokątnym kwadrat przeciwprostokątnej jest równy sumie kwadratów przyprostokątnych:

a^2=a^2+h^2\\ h^2=a^2-a^2 \\ h^2=0\\ h=0

Warunki zadania są spełnione tylko w przypadku, gdy wysokość trójkąta równoramiennego jest równa zeru. Taki trójkąt nie istnieje.

ksiązki Odpowiedź

Nie istnieje trójkąt równoramienny spełniający warunki zadania.

© medianauka.pl, 2011-02-08, ZAD-1138




Zadania podobne

kulkaZadanie - trójkąt w układzie współrzędnych
Dany jest trójkąt o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2). Oblicz długość wysokości tego trójkąta opuszczonej z wierzchołka C.


kulkaZadanie - środek ciężkości trójkąta
Znaleźć środek ciężkości w trójkącie o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2).


kulkaZadanie - wysokość w trójkącie
Oblicz wysokość w trójkącie równoramiennym o ramionach długości 10 i podstawie długości 12.


kulkaZadanie - trójkąt równoramienny
W trójkącie równoramiennym o ramionach długości 5 wysokość ma długość 4. Oblicz długość podstawy.


kulkaZadanie - suma miar kątów w tójkącie
W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30o. Oblicz miarę pozostałych kątów w tym trójkącie.


kulkaZadanie - trójkąty, obliczanie długości boków
W trójkącie ABC dwa kąty wewnętrzne mają miarę 30o. Długość podstawy jest równa 12. Oblicz długości pozostałych boków trójkąta.


kulkaZadanie - trójkąty, znajdowanie długości boków
W trójkącie ABC jeden z kątów wewnętrznych ma miarę 30o. Wysokość i bok tego trójkąta, leżące naprzeciwko tego kąta mają długość odpowiednio 3 i 4. Znaleźć długości pozostałych boków tego trójkąta.


kulkaZadanie maturalne nr 18, matura 2016 (poziom podstawowy)
Z odcinków o długościach: 5, 2a+1, a-1 można zbudować trójkąt równoramienny. Wynika stąd, że

A. a=6
B. a=4
C. a=3
D. a=2


kulkaZadanie maturalne nr 32, matura 2016 (poziom podstawowy)
Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50°. Oblicz kąty tego trójkąta.



Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza

Analiza

Geometria

Geometria

Prawdopodobieństwo

Probabilistyka



Polecamy koszyk


© Media Nauka 2008-2017 r.