Zadanie maturalne nr 6, matura 2017 (poziom rozszerzony)


W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz ∠ABC = β . Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E. Wykaż, że długość odcinka BE jest równa
.

.

ksiązki Rozwiązanie zadania

Sporządzamy rysunek poglądowy:

Rysunek

Pole trójkąta wyraża się wzorem:

\( P=\frac{1}{2}ab\sin{\gamma} \)

gdzie a, b są długościami boków trójkąta, a γ jest kątem między tymi bokami. Skorzystamy z tego wzoru kilka razy.

Pole trójkąta ABC jest równe:

\( P_{ABC}=\frac{1}{2}ac\sin{\beta} \)

Pole trójkąta ABE jest równe:

\( P_{ABE}=\frac{1}{2}dc \sin{\frac{\beta}{2}} \)

Pole trójkąta CBE jest równe:

\( P_{CBE}=\frac{1}{2}da \sin{\frac{\beta}{2}} \)

Suma pól trójkątów ABE i CBE jest równa polu trójkąta ABC, zatem:

\( P_{CBE}=P_{ABE}+ P_{CBE} \)

\( \frac{1}{2}ac\sin{\beta}=\frac{1}{2}dc \sin{\frac{\beta}{2}}+ \frac{1}{2}da \sin{\frac{\beta}{2}} / \cdot 2 \)

\( ac\sin{\beta}=dc \sin{\frac{\beta}{2}}+ da \sin{\frac{\beta}{2}} \)

Skorzystamy ze wzoru na sinus podwojonego kąta:

\( \sin2\alpha=2\sin\alpha \cdot \cos\alpha \)

Mamy więc:

\( ac\sin({2\cdot \frac{\beta}{2}})=dc \sin{\frac{\beta}{2}}+ da \sin{\frac{\beta}{2}} \)

\( ac\cdot 2\sin\frac{\beta}{2}\cdot \cos\frac{\beta}{2}=dc \sin{\frac{\beta}{2}}+ da \sin{\frac{\beta}{2}} \)

\( ac\cdot 2\sin\frac{\beta}{2}\cdot \cos\frac{\beta}{2}=d\cdot (a+c) \sin{\frac{\beta}{2}}/ : \sin{\frac{\beta}{2}} \)

\( 2ac \cdot \cos\frac{\beta}{2}=d\cdot (a+c) /:(a+c) \)

\( d=\frac{2ac \cdot \cos\frac{\beta}{2}}{(a+c)} \)

To kończy nasz dowód.


© medianauka.pl, 2022-12-29, ZAD-4572

Zadania podobne

kulkaZadanie - trójkąt w układzie współrzędnych
Dany jest trójkąt o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2). Oblicz długość wysokości tego trójkąta opuszczonej z wierzchołka C.

Pokaż rozwiązanie zadania

kulkaZadanie - środek ciężkości trójkąta
Znaleźć środek ciężkości w trójkącie o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2).

Pokaż rozwiązanie zadania

kulkaZadanie - wysokość w trójkącie
Oblicz wysokość w trójkącie równoramiennym o ramionach długości 10 i podstawie długości 12.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt równoramienny
W trójkącie równoramiennym o ramionach długości 5 wysokość ma długość 4. Oblicz długość podstawy.

Pokaż rozwiązanie zadania

kulkaZadanie - suma miar kątów w tójkącie
W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30o. Oblicz miarę pozostałych kątów w tym trójkącie.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąty, obliczanie długości boków
W trójkącie ABC dwa kąty wewnętrzne mają miarę 30o. Długość podstawy jest równa 12. Oblicz długości pozostałych boków trójkąta.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąty, znajdowanie długości boków
W trójkącie ABC jeden z kątów wewnętrznych ma miarę 30o. Wysokość i bok tego trójkąta, leżące naprzeciwko tego kąta mają długość odpowiednio 3 i 4. Znaleźć długości pozostałych boków tego trójkąta.

Pokaż rozwiązanie zadania

kulkaZadanie - trójkąt równoramienny
Czy długość podstawy trójkąta równoramiennego może być dwa razy większa od długości ramienia tego trójkąta?

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 18, matura 2016 (poziom podstawowy)
Z odcinków o długościach: 5, 2a+1, a-1 można zbudować trójkąt równoramienny. Wynika stąd, że

A. a=6
B. a=4
C. a=3
D. a=2


Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 32, matura 2016 (poziom podstawowy)
Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50°. Oblicz kąty tego trójkąta.

Pokaż rozwiązanie zadania

kulkaZadanie - działania na pierwiastkach i potęgach
Korzystając z własności działań na pierwiastkach lub potęgach oblicz: \sqrt{2}\cdot \sqrt[4]{4}:\sqrt[5]{16}

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 3, matura 2018 (poziom rozszerzony)

Dany jest czworokąt wypukły ABCD, w którym |AD|=|AB|=|BC|=a, |∠BAD|=60° i |∠ADC|=135°. Oblicz pole czworokąta ABCD.



Pokaż rozwiązanie zadania




Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
©® Media Nauka 2008-2023 r.