Zadanie maturalne nr 17, matura 2021
Prosta k jest styczna w punkcie A do okręgu o środku O. Punkt B leży na tym okręgu
i miara kąta AIB jest równa 80°. Przez punkty O i B poprowadzono prostą, która przecina prostą k w punkcie C (zobacz rysunek).
A. 10°
B. 30°
C. 40°
D. 50°
Rozwiązanie zadania
Wprowadźmy dodatkowe oznaczenia na rysunku:
Trójkąt AOB jest trójkątem równobocznym, gdyż |OA|=|OB|=r. Zatem kąty ∠OAB = ∠OBA = α. Ponieważ suma kątów w trójkącie jest równa 180°, to:
\(2\alpha+80°=180°\)
\(2\alpha=100°/:2\)
\(\alpha=50°\)
Kat ∠OAC jest kątem prostym, więc:
\(\beta+\alpha=90°\)
\(\beta+50°=90°\)
\(\beta=40°\)
Odpowiedź
© medianauka.pl, 2023-03-26, ZAD-4806
Zadania podobne

Dany jest trójkąt o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2). Oblicz długość wysokości tego trójkąta opuszczonej z wierzchołka C.
Pokaż rozwiązanie zadania

Znaleźć środek ciężkości w trójkącie o wierzchołkach A=(-1,0), B=(1,-1) i C=(1,2).
Pokaż rozwiązanie zadania

Oblicz wysokość w trójkącie równoramiennym o ramionach długości 10 i podstawie długości 12.
Pokaż rozwiązanie zadania

W trójkącie równoramiennym o ramionach długości 5 wysokość ma długość 4. Oblicz długość podstawy.
Pokaż rozwiązanie zadania

W trójkącie prostokątnym jeden z kątów wewnętrznych ma miarę 30o. Oblicz miarę pozostałych kątów w tym trójkącie.
Pokaż rozwiązanie zadania

W trójkącie ABC dwa kąty wewnętrzne mają miarę 30o. Długość podstawy jest równa 12. Oblicz długości pozostałych boków trójkąta.
Pokaż rozwiązanie zadania

W trójkącie ABC jeden z kątów wewnętrznych ma miarę 30o. Wysokość i bok tego trójkąta, leżące naprzeciwko tego kąta mają długość odpowiednio 3 i 4. Znaleźć długości pozostałych boków tego trójkąta.
Pokaż rozwiązanie zadania

Czy długość podstawy trójkąta równoramiennego może być dwa razy większa od długości ramienia tego trójkąta?
Pokaż rozwiązanie zadania

Z odcinków o długościach: \(5, 2a+1, a-1\) można zbudować trójkąt równoramienny. Wynika stąd, że
A. \(a=6\)
B. \(a=4\)
C. \(a=3\)
D. \(a=2\)
Pokaż rozwiązanie zadania

Jeden z kątów trójkąta jest trzy razy większy od mniejszego z dwóch pozostałych kątów, które różnią się o 50°. Oblicz kąty tego trójkąta.
Pokaż rozwiązanie zadania

W trójkącie ostrokątnym ABC bok AB ma długość c, długość boku BC jest równa a oraz ∠ABC = β . Dwusieczna kąta ABC przecina bok AC trójkąta w punkcie E. Wykaż, że długość odcinka BE jest równa

Pokaż rozwiązanie zadania

Korzystając z własności działań na pierwiastkach lub potęgach oblicz:
Pokaż rozwiązanie zadania

Dany jest czworokąt wypukły ABCD, w którym |AD|=|AB|=|BC|=a, |∠BAD|=60° i |∠ADC|=135°. Oblicz pole czworokąta ABCD.
Pokaż rozwiązanie zadania

Dany jest trójkąt równoramienny ABC, w którym |AC|=|BC|. Na ramieniu AC tego trójkąta wybrano punkt M (M ≠ A i M ≠ C ), a na ramieniu BC wybrano punkt N, w taki sposób, że |AM| = |CN|. Przez punkty M i N poprowadzono proste prostopadłe do podstawy AB tego trójkąta, które wyznaczają na niej punkty S i T. Udowodnij, że |ST| = 1/2|AB|.
Pokaż rozwiązanie zadania