Logo Media Nauka
Sklep naukowy

Zadanie - Działania na potęgach - oblicz wartość wyrażenia

Oblicz wartość wyrażenia:
[(\frac{1}{5})^{-\frac{1}{2}}]^4+5\cdot 5^{-2}-(\frac{1}{5^3})^{-1}

książka Rozwiązanie zadania uproszczone

[(\frac{1}{5})^{-\frac{1}{2}}]^4+5\cdot 5^{-2}-(\frac{1}{5^3})^{-1}=(5^{\frac{1}{2}})^4+5^1\cdot 5^{-2}-(5^{-3})^{-1}=
=5^2+5^1\cdot 5^{-2}-5^3=5^2+5^{-1}-5^3=25+\frac{1}{5}-125=-99\frac{4}{5}

książka Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

By wykonywać działania na potęgach w pierwszej kolejności należy uzyskać jednakowe podstawy potęg. W naszym przypadku wszystkie zaznaczone kolorem liczby można przedstawić jako potęgę liczby 5

[(\frac{1}{5})^{-\frac{1}{2}}]^4+5\cdot 5^{-2}-(\frac{1}{5^3})^{-1}=(5^{\frac{1}{2}})^4+5^1\cdot 5^{-2}-(5^{-3})^{-1} tło tło tło tło

Zastosowaliśmy tutaj następujący wzór:

a^{-n}=\frac{1}{a^n}

Teraz zastosujemy inny podstawowy wzór

(a^{m})^n=a^{m \cdot n}

Zgodnie z nim mamy:

(5^{\frac{1}{2}})^4+5^1\cdot 5^{-2}-(5^{-3})^{-1}=5^2+5^1\cdot 5^{-2}-5^3 tło tło tło tło

Uzyskaliśmy już potęgi o takich samych podstawach. Możemy więc zastosować wzór:

a^m \cdot a^n=a^{m+n}

Zgodnie z którym mamy:

5^2+5^1\cdot 5^{-2}-5^3=5^2+5^{1-2}-5^3=5^2+5^{-1}-5^3 tło tło tło

Ponieważ nie mamy tutaj do czynienia z iloczynem ani ilorazem potęg, więc nie stosujemy już żadnych wzorów z zakresu działań na potęgach, tylko obliczamy wartości poszczególnych potęg.

5^2+5^{-1}-5^3=25+\frac{1}{5}-125=-99\frac{4}{5}

książka Odpowiedź

[(\frac{1}{5})^{-\frac{1}{2}}]^4+5\cdot 5^{-2}-(\frac{1}{5^3})^{-1}=-99\frac{4}{5}

© medianauka.pl, 2009-11-15, ZAD-381





Zadania podobne

kulkaZadanie - Działania na potęgach - Uprościć wyrażenie
Uprościć wyrażenie:
\Large \frac{6^{\frac{4}{3}}\cdot (\frac{3}{8})^{0,25}\cdot 2^{-0,(3)}\cdot (\frac{3}{2})^{\frac{3}{5}}}{2^{\frac{3}{20}}\cdot 3^{\frac{11}{60}}}

Pokaż rozwiązanie zadania

kulkaZadanie - Działania na potęgach - Uprość wyrażenie
Uprościć wyrażenie:
\Large \frac{(x^{\frac{1}{4}}+1)(x^{-\frac{1}{4}}-1)}{3x^{\frac{1}{4}}}-\frac{3}{2x^{\frac{3}{4}}}

Pokaż rozwiązanie zadania

kulkaZadanie - Działania na potęgach - upraszczanie wyrażeń
Uprościć wyrażenie:
W=[(a^3-x^2)^{\frac{1}{2}}-1][(a^3-x^2)^{\frac{1}{2}}+1]-a^3+\\+x^2+(a^3-x^2)^{-\frac{1}{2}}+a^{\frac{1}{2}}(a^2-\frac{x^2}{a})^{-\frac{1}{2}}+1

Pokaż rozwiązanie zadania

kulkaZadanie - Działania na potęgach - Oblicz wartość wyrażenia
Oblicz:
3^2\cdot 9^8\cdot (\frac{1}{3})^{-3}\cdot 27^{-5}\cdot 3^{\frac{1}{3}}\cdot 9^{\frac{1}{3}}

Pokaż rozwiązanie zadania

kulkaZadanie - Działania na potęgach - Oblicz wartość wyrażenia, korzystając z własności potęg
Oblicz wartość wyrażenia, korzystając z własności potęg:
(5^{-\frac{1}{2}})^{5^{\frac{1}{3}}\cdot 25^{-\frac{2}{3}}}

Pokaż rozwiązanie zadania

kulkaZadanie - działania na pierwiastkach i potęgach - Korzystając z własności działań na pierwiastkach oblicz
Korzystając z własności działań na pierwiastkach lub potęgach oblicz: \sqrt{2}\cdot \sqrt[3]{2}

Pokaż rozwiązanie zadania

kulkaZadanie - działania na pierwiastkach i potęgach
Korzystając z własności działań na pierwiastkach lub potęgach oblicz: \sqrt{2}\cdot \sqrt[4]{4}:\sqrt[5]{16}

Pokaż rozwiązanie zadania

kulkaZadanie - działania na pierwiastkach i potęgach
Oblicz wartość wyrażenia: \sqrt{\sqrt[5]{\sqrt[4]{2^{48}}}}

Pokaż rozwiązanie zadania

kulkaZadanie - pierwiastek wielomianu
Sprawdzić, czy liczby 1, \ \sqrt{2} są pierwiastkami wielomianu W(x)=\sqrt{2}x^5-2x^4-\sqrt{2}x^3+3x^2-2\sqrt{2}x+2

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 12, matura 2016 (poziom podstawowy)
Funkcja f określona jest wzorem f(x)=\frac{2x^3}{x^6+1} dla każdej liczby rzeczywistej x. Wtedy f(-\sqrt[3]{3}) jest równa:

A. wzór
B. wzór
C. wzór
D. wzór


Pokaż rozwiązanie zadania



© Media Nauka 2008-2018 r.