Logo Media Nauka

Zadanie - równanie kwadratowe

Rozwiązać równanie:
a) x^2-\frac{1}{4}x-\frac{1}{8}=0
b) x^2-10x-119=0

ksiązki a) Rozwiązanie zadania szczegółowe

Współczynniki trójmianu znajdującego się po lewej stronie równania są następujące:

a=1\\ b=-\frac{1}{4}\\ c=-\frac{1}{8}

Obliczamy wyróżnik trójmianu kwadratowego:

\Delta=b^2-4ac=(-\frac{1}{4})^2-4\cdot 1\cdot (-\frac{1}{8})=\frac{1}{16}+\frac{4}{8}=\frac{1}{16}+\frac{8}{16}=\frac{9}{16} \\ \sqrt{\Delta}=\sqrt{\frac{9}{16}}=\frac{3}{4}

Wyróżnik kwadratowy jest większy od zera, więc równanie kwadratowe ma dwa rozwiązania. Obliczamy pierwiastki trójmianu kwadratowego:

x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{\frac{1}{4}-\frac{3}{4}}{2}=\frac{-\frac{2}{4}}{2}=\frac{-\frac{1}{2}}{2}=-\frac{1}{4} \\ x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\frac{1}{4}+\frac{3}{4}}{2}=\frac{\frac{4}{4}}{2}=\frac{1}{2}

ksiązki Odpowiedź

x_1=-\frac{1}{4}, \ x_2=\frac{1}{2}

ksiązki b) Rozwiązanie zadania szczegółowe

Współczynniki trójmianu znajdującego się po lewej stronie równania są następujące:

a=1\\ b=-10\\ c=-119

Obliczamy wyróżnik trójmianu kwadratowego:

\Delta=b^2-4ac=(-10)^2-4\cdot 1\cdot (-119)=100+476=576

Aby znaleźć pierwiastek liczby 576 rozkładamy ją na czynniki:

\begin{tabular}{c|c} 576 & 2 \\ 288 & 2 \\ 144 & 2 \\ 72 & 2 \\ 36 & 2 \\ 18 & 2 \\ 9 & 3 \\ 3 & 3 \\ 1 \end{tabular}

576=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3=2^2\cdot 2^2\cdot 2^2 \cdot 3^2  \\ \sqrt{\Delta}=\sqrt{576}=\sqrt{2^2\cdot 2^2\cdot 2^2 \cdot 3^2 }=2\cdot 2\cdot 2 \cdot 3 =24

Wyróżnik kwadratowy jest większy od zera, więc równanie kwadratowe ma dwa rozwiązania. Obliczamy pierwiastki trójmianu kwadratowego:

x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-24}{2}=\frac{-14}{2}=-7 \\ x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{10+24}{2}=\frac{34}{2}=17

ksiązki Odpowiedź

x_1=-7, \ x_2=17

© medianauka.pl, 2010-02-12, ZAD-599



Zadania podobne

kulkaZadanie - równanie kwadratowe z wartością bezwzględną
Rozwiązać równanie 2x^2-|x|+1=2

Pokaż rozwiązanie zadania

kulkaZadanie - ciąg arytmetyczny
Rozwiązać równanie 2+3+4+...+x=209

Pokaż rozwiązanie zadania

kulkaZadanie - równanie kwadratowe
Rozwiązać równanie:
a) x^2+4x-5=0
b) x^2-22x+121=0
c) x^2+2x+7=0

Pokaż rozwiązanie zadania

kulkaZadanie - równanie kwadratowe
Znaleźć wszystkie równania kwadratowe, których rozwiązaniem są liczby \sqrt{2}, \ \frac{1}{2}

Pokaż rozwiązanie zadania

kulkaZadanie - równanie kwadratowe - zadanie z treścią
Pole kwadratu jest równe 2. Jaka jest długość jego boku?

Pokaż rozwiązanie zadania

kulkaZadanie - zastosowanie równań kwadratowych
Rozwiązać równanie \frac{1}{x-1}+\frac{1}{x+1}=1

Pokaż rozwiązanie zadania

kulkaZadanie - Zastosowanie równań kwadratowych
Rozwiązać równanie \frac{1}{1-2x}+\frac{3}{4x+1}=-3

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 33, matura 2014
Turysta zwiedzał zamek stojący na wzgórzu. Droga łącząca parking z zamkiem ma długość 2,1 km. Łączny czas wędrówki turysty z parkingu do zamku i z powrotem, nie licząc czasu poświęconego na zwiedzanie, był równy 1 godzinę i 4 minuty. Oblicz, z jaką średnią prędkością turysta wchodził na wzgórze, jeżeli prędkość ta była o 1 km/h mniejsza od średniej prędkości, z jaką schodził ze wzgórza.

Pokaż rozwiązanie zadania



© Media Nauka 2008-2018 r.