Logo Media Nauka
Sklep naukowy

zadanie

Zadanie - wzajemne położenie prostych w układzie


Dana jest prosta o równaniu y=-7x+5. Znaleźć równanie prostej równoległej do tej prostej, przechodzącej przez początek układu współrzędnych.


ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Oznaczmy równanie szukanej prostej przez y=ax+b. Wiemy, że proste są równoległe, gdy ich współczynniki kierunkowe a są równe. Stąd wiemy już, że a=-7. Wiemy też, że prosta, której szukamy przechodzi przez początek układu współrzędnych, czyli przez punkt O(0,0). Podstawiamy więc te współrzędne do równania szukanej prostej i wyznaczamy współczynnik b.

y=ax+b\\ a=-7\\ O(0,0)\\ 0=-7\cdot 0 +b\\b=0

Mamy oba współczynniki, możemy więc zapisać równanie prostej:

ksiązki Odpowiedź

y=-7x

© medianauka.pl, 2010-03-11, ZAD-684




Zadania podobne

kulkaZadanie - wzajemne położenie prostych na płaszczyźnie
Dana jest prosta o równaniu y=5x+\frac{1}{5}. Znaleźć równanie prostej prostopadłej do tej prostej, przechodzącej przez punkt A(1,-1).


kulkaZadanie - wzajemne położenie prostych
Znaleźć równania prostych zawierających boki kwadratu ABCD, jeśli wiadomo, że współrzędne wierzchołków są liczbami całkowitymi.
równania prostych zawierających boki kwadratu ABCD


kulkaZadanie - wzajemne położenie prostych na płaszczyźnie
Znaleźć równania wszystkich prostych prostopadłych przechodzących przez punkty A(1,2), B(2,-1), C(-1,3).


kulkaZadanie - wzajemne położenie prostych na płaszczyźnie
Znaleźć równanie prostej, która zawiera wysokość w trójkącie ABC przedstawionym na poniższym rysunku:
wysokość w trójkącie ABC w układzie współrzędnych


kulkaZadanie maturalne nr 20, matura 2016 (poziom podstawowy)
Proste opisane równaniami y=\frac{2}{m-1}x+m-2 oraz y=mx+\frac{1}{m+1} są prostopadłe, gdy:

A. m=2
B. m=1/2
C. m=1/3
D. m=-2


kulkaZadanie maturalne nr 13, matura 2016 (poziom rozszerzony)
Punkty A=(30,32) i B =(0,8) są sąsiednimi wierzchołkami czworokąta ABCD wpisanego w okrąg. Prosta o równaniu x-y+2=0 jest jedyną osią symetrii tego czworokąta i zawiera przekątną AC. Oblicz współrzędne wierzchołków C i D tego czworokąta.


kulkaZadanie maturalne nr 18, matura 2015 (poziom podstawowy)
Prosta l o równaniu y=m2x+3 jest równoległa do prostej k o równaniu y=(4m-4)x-3. Zatem:

A. m=2
B. m=-2
C. m=-2-2\sqrt{2}
D. m=-2+2\sqrt{2}


kulkaZadanie maturalne nr 19, matura 2015 (poziom podstawowy)
Proste o równaniach: y=2mx-m2-1 oraz y=4m2x+m2+1 są prostopadłe dla:

A. m=-1/2
B. m=1/2
C. m=1
D. m=2


kulkaZadanie maturalne nr 5, matura 2015 (poziom rozszerzony)
Odległość początku układu współrzędnych od prostej o równaniu y = 2x + 4 jest równa

A. \frac{\sqrt{5}}{5}
B. \frac{4\sqrt{5}}{5}
C. \frac{4}{5}
D. 4



Logika i zbiory

Zbiory

Liczby

Liczby

Funkcje

Funkcje

Równania i nierówności

Równania

Analiza

Analiza

Geometria

Geometria

Prawdopodobieństwo

Probabilistyka



Polecamy koszyk


© Media Nauka 2008-2017 r.