Zadanie - odległość punktu od figury

Treść zadania:

Obliczyć odległość punktu \(M=(1,2)\) od trójkąta wyznaczonego przez punkty \(A=(-1,0), B=(5,-1), C=(1,-3)\).


Rozwiązanie zadania

Odległość punktu od prostej równa jest odległości tego punktu od rzutu prostokątnego na tę prostą. Sporządzamy więc odpowiedni rysunek.

Szukamy długości \(d\). Aby to uczynić, musimy znaleźć współrzędne punktu \(B\).

Punkt B jest punktem przecięcia się prostej o równaniu \(y=-2x+2\) i prostej prostopadłej do niej, przechodzącej przez punkt A. Prostą tę oznaczamy następująco: \(y=ax+b\). Musimy znaleźć współczynniki \(a\) i \(b\)

Skorzystamy z własności prostych prostopadłych. Ich współczynniki kierunkowe spełniają warunek:

\(a_1=-\frac{1}{a_2}\)

Mamy więc:

\(a=-\frac{1}{-2}=\frac{1}{2}\)

\(y=\frac{1}{2}x+b\)

Wiemy, że prosta przechodzi przez punkt \(A=(-3,4)\). Podstawiamy do równania prostej współrzędne tego punktu i rozwiązujemy równanie:

\(y=\frac{1}{2}x+b\)

\(4=\frac{1}{2}\cdot (-3)+b\)

\(4=-\frac{3}{2}+b\)

\(b=5\frac{1}{2}=\frac{11}{2}\)

\(y=\frac{1}{2}x+\frac{11}{2}\)

Aby znaleźć współrzędne punktu \(B\) musimy rozwiązać układ równań, stosując metodę przeciwnych współczynników:

Otrzymaliśmy więc współrzędne punktu \(B\). Możemy już obliczyć odległość \(d=|AB|\)

Skorzystamy ze wzoru na odległość punktów \(A=(x_A,y_A), B=(x_B,y_B)\) w układzie współrzędnych:

\(z=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}\)

Obliczamy odległość między punktami o współrzędnych: \(A=(-3,4), B=(-\frac{7}{5}, \frac{24}{5})\). Korzystamy z powyższego wzoru:

\(d=\sqrt{(-\frac{7}{5}+3)^2+(\frac{24}{5}-4)^2}=\sqrt{(\frac{8}{5})^2+(\frac{4}{5})^2}=\sqrt{\frac{64+16}{25}}=\frac{\sqrt{80}}{5}=\frac{4\sqrt{5}}{5}\)

Odpowiedź

\(d=\frac{4\sqrt{5}}{5}\)

© medianauka.pl, 2011-01-01, ZAD-1065


AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Jaka jest odległość między różnymi punktami \(A, B\), jeżeli \(|AC|=4, |BC|=5\)?

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Obliczyć odległość początku układu współrzędnych od okręgu o równaniu \((x-3)^2+(y-3)^2=4\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Obliczyć odległość punktu \(A=(-3,4)\) od prostej o równaniu \(y=-2x+2\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Znaleźć współrzędne punktów, których odległość od prostej \(y=3x+2\) jest równa \(\sqrt{2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Dane są punkty \(A=(\frac{\sqrt{2}}{2},2\sqrt{2}), \ B=(\frac{1}{\sqrt{2}}, 3\sqrt{2}+1)\). Obliczyć odległość \(|AB|\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Oblicz odległość punktu \(P=(3,2)\) od prostej \(3x+4y-1=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Oblicz odległość punktu \(P=(-1,1)\) od prostej \(y=2x-1\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

ilustracja do zadania 13 , matura 2016W okręgu o środku w punkcie \(S\) poprowadzono cięciwę \(AB\), która utworzyła z promieniem \(AS\) kąt o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu \(S\) od cięciwy \(AB\) jest liczbą z przedziału

A. \(\langle \frac{9}{2};\frac{11}{2}\rangle\)

B. \(\langle \frac{11}{2};\frac{13}{2}\rangle\)

C. \(\langle \frac{13}{2};\frac{19}{2}\rangle\)

D. \(\langle \frac{19}{2};\frac{37}{2}\rangle\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Odległość początku układu współrzędnych od prostej o równaniu \(y = 2x + 4\) jest równa

A. \(\frac{\sqrt{5}}{5}\)

B. \(\frac{4\sqrt{5}}{5}\)

C. \(\frac{4}{5}\)

D. \(4\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Punkt \(A=(7,−1)\) jest wierzchołkiem trójkąta równoramiennego \(ABC\), w którym \(|AC|=|BC|\). Obie współrzędne wierzchołka \(C\) są liczbami ujemnymi. Okrąg wpisany w trójkąt ABC ma równanie \(x^2+y^2=10\). Oblicz współrzędne wierzchołków \(B\) i \(C\) tego trójkąta.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

Prosta przechodząca przez punkty \(A=(8, −6)\) i \(B=(5, 15)\) jest styczna do okręgu o środku w punkcie \(O=(0, 0)\). Oblicz promień tego okręgu i współrzędne punktu styczności tego okręgu z prostą AB.

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.