Logo Media Nauka

Facebook

Zadanie - odległość punktów


Dane są punkty A=(\frac{\sqrt{2}}{2},2\sqrt{2}), \ B=(\frac{1}{\sqrt{2}}, 3\sqrt{2}+1). Obliczyć odległość |AB|.

ksiązki Rozwiązanie zadania uproszczone

|AB|=\sqrt{(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{2}})^2+(3\sqrt{2}+1-2\sqrt{2})^2}=\sqrt{0+(\sqrt{2}+1)^2}=\sqrt{2}+1

ksiązki Rozwiązanie zadania ze szczegółowymi wyjaśnieniami

Odległość punktów A=(x_A,y_A), \ B=(x_B, y_B) obliczamy ze wzoru:

|AB|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

Stosujemy powyższy wzór:

|AB|=\sqrt{(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{2}})^2+(3\sqrt{2}+1-2\sqrt{2})^2}=\\ =\sqrt{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{\sqrt{2}\cdot \sqrt{2}})^2+(\sqrt{2}+1)^2}=\\=\sqrt{(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2})^2+(\sqrt{2}+1)^2}=\sqrt{0+(\sqrt{2}+1)^2}=\sqrt{2}+1

ksiązki Odpowiedź

|AB|=\sqrt{2}+1

© medianauka.pl, 2011-01-06, ZAD-1078

Zadania podobne

kulkaZadanie - odległość punktów
Sprawdzić, czy istnieją takie punkty A, B i C, że
a) |AB|=10, |AC|=5, |BC|=5
b) |AB|=10, |AC|=4, |BC|=5
c) |AB|=10, |AC|=6, |BC|=5


Pokaż rozwiązanie zadania

kulkaZadanie - odległość punktów
Jaka jest odległość między różnymi punktami A, B, jeżeli |AC|=4, |BC|=5?

Pokaż rozwiązanie zadania

kulkaZadanie - odległość początku układu współrzędnych od okręgu
Obliczyć odległość początku układu współrzędnych od okręgu o równaniu (x-3)2+(y-3)2=4

Pokaż rozwiązanie zadania

kulkaZadanie - odległość punktu od prostej
Obliczyć odległość punktu A=(-3,4) od prostej o równaniu y=-2x+2

Pokaż rozwiązanie zadania

kulkaZadanie - odległość punktu od figury
Obliczyć odległość punktu M=(1,2) od trójkąta wyznaczonego przez punkty A=(-1,0), B=(5,-1), C=(1,-3)

Pokaż rozwiązanie zadania

kulkaZadanie - odległość punktu od prostej
Znaleźć współrzędne punktów, których odległość od prostej y=3x+2 jest równa \sqrt{2}

Pokaż rozwiązanie zadania

kulkaZadanie - odległość punktu od prostej
Oblicz odległość punktu P=(3,2) od prostej 3x+4y-1=0.

Pokaż rozwiązanie zadania

kulkaZadanie - odległość punktu od prostej
Oblicz odległość punktu P=(-1,1) od prostej y=2x-1.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 13, matura 2016 (poziom podstawowy)
ilustracja do zadania 13 , matura 2016W okręgu o środku w punkcie S poprowadzono cięciwę AB, która utworzyła z promieniem AS kąt o mierze 31° (zobacz rysunek). Promień tego okręgu ma długość 10. Odległość punktu S od cięciwy AB jest liczbą z przedziału

A. a
B. b
C. c
D. d


Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 5, matura 2015 (poziom rozszerzony)
Odległość początku układu współrzędnych od prostej o równaniu y = 2x + 4 jest równa

A. \frac{\sqrt{5}}{5}
B. \frac{4\sqrt{5}}{5}
C. \frac{4}{5}
D. 4

Pokaż rozwiązanie zadania






Polecamy w naszym sklepie

Algebra
Kolorowe skarpetki - Lollypop
Matematyka konkretna
Kubek matematyka pi
50 wielkich idei które powinieneś znać
Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
© ® Media Nauka 2008-2021 r.