Zadanie - środek odcinka

Rozwiązanie zadania uproszczone

Rozwiązanie zadania ze szczegółowymi wyjaśnieniami
Środek kwadratu leży na przecięciu się przekątnych tego kwadratu. Punkt ten jest środkiem przekątnej.

Korzystamy ze wzoru na współrzędne środka odcinka :

Korzystamy z powyższego wzoru:

Odpowiedź

© medianauka.pl, 2011-01-03, ZAD-1071
Zadania podobne

Dane są punkty A=(-3,-2), B=(2, -2). Obliczyć długość odcinka

Pokaż rozwiązanie zadania

Dany jest punkt A=(1,4). Znaleźć taki punkt B, że


Pokaż rozwiązanie zadania

Obliczyć pole i obwód trójkąta prostokątnego, wyznaczonego przez punkty A=(1,2), B=(1,3), C=(4,1)
Pokaż rozwiązanie zadania

Dany jest odcinek o końcach


Pokaż rozwiązanie zadania

Znaleźć równanie symetralnej odcinka


Pokaż rozwiązanie zadania

W układzie współrzędnych dane są punkty A = (a,6) oraz B = (7,b) . Środkiem odcinka AB jest punkt M = (3,4). Wynika stąd, że:
A. a=5 i b=5
B. a=-1 i b=2
C. a=4 i b=10
D. a=-4 i b=-2
Pokaż rozwiązanie zadania

Punkty A=(30,32) i B =(0,8) są sąsiednimi wierzchołkami czworokąta ABCD wpisanego w okrąg. Prosta o równaniu x-y+2=0 jest jedyną osią symetrii tego czworokąta i zawiera przekątną AC. Oblicz współrzędne wierzchołków C i D tego czworokąta.
Pokaż rozwiązanie zadania

Parabola o równaniu


Wyznacz pole trapezu ABCD w zależności od pierwszej współrzędnej wierzchołka C. Oblicz współrzędne wierzchołka C tego z rozpatrywanych trapezów, którego pole jest największe.
Pokaż rozwiązanie zadania

Odległość początku układu współrzędnych od prostej o równaniu y = 2x + 4 jest równa
A.

B.

C.

D. 4
Pokaż rozwiązanie zadania

Punkt A=(7,−1) jest wierzchołkiem trójkąta równoramiennego ABC, w którym |AC|=|BC|. Obie współrzędne wierzchołka C są liczbami ujemnymi. Okrąg wpisany w trójkąt ABC ma równanie x2+y2=10. Oblicz współrzędne wierzchołków B i C tego trójkąta.
Pokaż rozwiązanie zadania

Dane są punkty o współrzędnych A=(−2, 5) oraz B=(4, −1) . Średnica okręgu wpisanego
w kwadrat o boku AB jest równa
A. 12
B. 6
C. 6√2
D. 2√6
Pokaż rozwiązanie zadania

Dany jest punkt A = (−18,10). Prosta o równaniu y = 3x jest symetralną odcinka AB. Wyznacz współrzędne punktu B.
Pokaż rozwiązanie zadania

Punkt B jest obrazem punktu A = (−3, 5) w symetrii względem początku układu współrzędnych. Długość odcinka AB jest równa
A. 2√34
B. 8
C. √34
D. 12
Pokaż rozwiązanie zadania