zadanie maturalne

Zadanie maturalne nr 12, matura 2023 - poziom rozszerzony

Treść zadania:

Funkcja \(f\) jest określona wzorem \(f(x)=81^{\log_3{x}}+\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3}\cdot x^2-6x\) dla każdej liczby dodatniej \(x\).

1. Wykaż, że dla każdej liczby dodatniej \(x\) wyrażenie \(81^{\log_3{x}}+\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3}\cdot x^2-6x\) można równoważnie przekształcić do postaci \(x^4+x^2-6x\).

2. Oblicz najmniejszą wartość funkcji \(f\) określonej dla każdej liczby dodatniej \(x\). Zapisz obliczenia. Wskazówka: przyjmij, że wzór funkcji \(f\) można przedstawić w postaci \(f(x)=x^4+x^2-6x\).


Rozwiązanie zadania

Zajmijmy się najpierw wyrażeniem \(81^{\log_3{x}}\) i przekształćmy je:

\(81^{\log_3{x}}=(3^4)^{\log_3{x}}= 3^{4\log_3{x}}= 3^{\log_3{x^4}}=x^4\)

Przekształcamy ułamek \(\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3}\), korzystając z własności logarytmów:

\(\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3} = \frac{2}{3}\log_2{3^{\frac{3}{2}}}\cdot \log_3{2} = \)

\(=\frac{2}{3}\cdot \frac{3}{2}\log_2{3}\cdot \log_3{2} = \log_2{3}\cdot \log_3{2} =\)

\(=\log_2{3}\cdot \frac{\log_2{2}}{\log_2{3}} = \log_2{2} =1\)

Zatem \(81^{\log_3{x}}+\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3}\cdot x^2-6x = x^4+x^2-6x\)

Obliczmy teraz najmniejszą wartość funkcji \(f\) określonej dla każdej liczby dodatniej \(x\).

Wyznaczamy pochodną funkcji:

\(f'(x)=4x^3+2x-6\)

Szukamy miejsc zerowych pochodnej:

\(4x^3+2x-6=0\)

\(4x^3+2x-4-2=0\)

\((4x^3-4)+(2x-2)=0\)

\(4(x^3-1)+2(x-1)=0\)

\(4(x-1)(x^2+x+1)+2(x-1)=0\)

\((x-1)(4x^2+4x+4)+2(x-1)=0\)

\((x-1)(4x^2+4x+4+2)=0\)

\((x-1)(4x^2+4x+6)=0\)

Zbadajmy trójmian \(4x^2+4x+6\):

\(\Delta=16-16\cdot6<0\)

Zatem równanie \((x-1)(4x^2+4x+6)=0\) ma jedno rozwiązanie \(x=1\).

Badamy znak pochodnej:

\(f'(x)>0 dla \(x>1\)\)

\(f'(x)<0\) dla \(x<1\), a pamiętając dziedzinę równania dla \(x\in (0,1)\).

Zatem funkcja \(f\) jest malejąca w przedziale \((0,1]\) oraz jest rosnąca w przedziale \([1,+\infty)\).

Stąd dla \(x=1\) funkcja \(f\) osiąga wartość najmniejszą równą \(f(1)=14+12−6∙1=−4\).


© medianauka.pl, 2023-07-22, ZAD-4948


AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
Zbiór zadań z matematyki
Zbiór zadań z matematyki wraz z pełnymi rozwiązaniami. W naszej bazie zgromadziliśmy ponad tysiąc zadań.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.

Zadania podobne


Zadanie nr 1.

Rozwiązać równanie:

a) \(2^x=3\)

b) \(2^x=3\)

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Oblicz wartość wyrażenia \(W=5\log{a}-2\log{\frac{a^3}{b^2}}+\log{ab^6}\) dla \(a=\frac{7}{11}\) i \(b=\frac{1}{10}\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Oblicz wartość wyrażenia \(4^{1-\log_{2}{3}}\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Oblicz: \(\frac{5^{-\log_{5}{\frac{1}{8}}}}{2\log_{5}{10}-\log_{5}{4}}\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Oblicz wartość wyrażenia: \(W=\log_{\frac{1}{3}}{x}+\log_{9}{x^2}+\log_{\sqrt{3}}{\sqrt{x}}-log_{3}{x}\) dla \(x>0\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Oblicz wartość wyrażenia: \(\log_{4}{a}+4\log_{a}{2}\) wiedząc, że \(\log_{16}{a}=3\) i \(a>1\).

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Oblicz:

a) \(\log_{5}{25\sqrt[3]{5}}\)

b) \(\log_{2}{\frac{\sqrt{2}}{4}}\)

c) \(\log_{2}{16^{\log_{3}{\sqrt{3}}}}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 — maturalne.

Liczba \(\log_{\sqrt{2}}{(2\sqrt{2})}\) jest równa:

A. \(\frac{3}{2}\)

B. \(2\)

C. \(\frac{5}{2}\)

D. \(3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 — maturalne.

Suma \(\log_8{16}+1 jest równa

A. \(3\)

B. \(\frac{3}{2}\)

C. \(\log_8{17}\)

D. \(\frac{7}{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 — maturalne.

Liczba \(2\log_2{3}-2\log_2{5}\) jest równa:

A. \(\log_2 \frac{9}{25}\)

B. \(\log_2 \frac{3}{5}\)

C. \(\log_2 \frac{9}{5}\)

D. \(\log_2 \frac{6}{25}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 — maturalne.

Liczba \(2\log_3{6}-\log_3{4}\) jest równa:

  1. \(4\)
  2. \(2\)
  3. \(2\log_3{2}\)
  4. \(\log_3{8}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 — maturalne.

Liczba \(\log_{5}{\sqrt{125}}\) jest równa:

A. \(\frac{2}{3}\)

B. \(2\)

C. \(3\)

D. \(\frac{3}{2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 — maturalne.

Suma \(2\log{\sqrt{10}}+\log{10^3}\) jest równa

A. \(2\)

B. \(3\)

C. \(4\)

D. \(5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 — maturalne.

Liczba \(\log_{4}{2}+2\log_{4}{8}\) jest równa

A. \(6\log_{4}{10}\)

B. \(16\)

C. \(5\)

D. \(6\log_{4}{16}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 — maturalne.

Liczba \(\log_{3}{\sqrt{27}}−\log_{27}{\sqrt{3}}\) jest równa

A. \(\frac{4}{3}\)

B. \(\frac{1}{2}\)

C. \(\frac{11}{12}\)

D. 3

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 — maturalne.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba \(\log_9{27}+\log_9{3}\) jest równa

A. 81

B. 9

C. 4

D. 2

Pokaż rozwiązanie zadania.




Udostępnij
©® Media Nauka 2008-2025 r.