Logo Media Nauka

Zadanie maturalne nr 26, matura 2015 (poziom podstawowy)

Rozwiąż nierówność 2x2-4x>(x+3)(x-2).

ksiązki Rozwiązanie zadania

Przenosimy wszystkie czynniki na jedną stronę i wyciągamy przed nawias czynnik (x-2):

2x^2-4x>(x+3)(x-2)\\2x(x-2)-(x+3)(x-2)>0\\(x-2)[2x-(x+3)]>0\\(x-2)(x-3)>0

Po lewej stronie nierówności otrzymaliśmy postać iloczynową trójmianu kwadratowego o miejscach zerowych 2 i 3. Wartości większe od zera odczytujemy z wykresu.

szkic do zadania 26 matura 2015

ksiązki Odpowiedź

Odpowiedź: x∈(-∞,2)∪(3,+∞)

© medianauka.pl, 2016-12-14, ZAD-3324

Zadania podobne

kulkaZadanie - nierówność kwadratowa, właściwości pierwiastka, nierówność z parametrem
Dla jakiej wartości parametru x prawdziwa jest równość \sqrt{(x^2-2x+1)^2}=x^2-2x+1?

Pokaż rozwiązanie zadania

kulkaZadanie - dziedzina funkcji logarytmicznej
Wyznaczyć dziedzinę funkcji y=\log(5x^2-3x+1)

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa z wartością bezwzględną
Rozwiązać nierówność 2x^2-|x+1|\leq -1

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa
Rozwiązać nierówność:
a) x^2+2x-3\geq 0
b) -x^2+\frac{3}{4}x-\frac{1}{8}> 0
c) -x^2+2\leq 0

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa
Rozwiązać nierówność:
a) \sqrt{3}x^2+\sqrt{2}x+1< 0
b) -x^2-2x-5\geq 0

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa
Rozwiązać nierówność:
a) x^2+8x+16> 0
b) -x^2+2\sqrt{2}x-2\geq 0

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa z parametrem
Dla jakich wartości parametru m nierówność x^2-2x-m+1\leq 0 ma jedno rozwiązanie x=1?

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa z parametrem
Dla jakich wartości parametru m zbiorem rozwiązań nierówności x^2+mx-1+m> 0 jest:
a) zbiór liczb rzeczywistych
b) zbiór pusty ?

Pokaż rozwiązanie zadania

kulkaZadanie - nierówność kwadratowa
Rozwiązać nierówność \frac{x}{x+1}\geq 2

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 27, matura 2016 (poziom podstawowy)
Rozwiązać nierówność 2x^2-4x>3x^2-6x.

Pokaż rozwiązanie zadania



© Media Nauka 2008-2018 r.