Zadanie - ciąg arytmetyczny
Wykazać, że ciąg \(a_n=\frac{n\sqrt{2}+n}{3}\) jest ciągiem arytmetycznym.
Rozwiązanie zadania
Aby sprawdzić, czy dany ciąg jest ciągiem arytmetycznym musimy sprawdzić czy różnica dwóch kolejnych wyrazów ciągu \(a_{n+1}-a_{n}\) jest wartością stałą. Najpierw jednak trzeba znaleźć wyraz \(n+1\). Nie jest to trudne, gdyż mamy jawnie zapisany wzór na \(n\)-ty wyraz ciągu. W więc do wzoru na \(n\)-ty wyraz ciągu podstawić \(n+1\):
\(a_n=\frac{n\sqrt{2}+n}{3}\)
\(a_{n+1}=\frac{(n+1)\sqrt{2}+n+1}{3}\)
Badamy różnicę ciągu:
\(a_{n+1}-a_n=\frac{(n+1)\sqrt{2}+n+1}{3}-\frac{n\sqrt{2}+n}{3}=\)
\(=\frac{\cancel{n\sqrt{2}}+\sqrt{2}+\cancel{n}+1-\cancel{n\sqrt{2}}-\cancel{n}}{3}=\frac{\sqrt{2}+1}{3}=const\)
Różnica ciągu jest stała (nie zależy od \(n\)), więc tym samym wykazaliśmy, że ciąg ten jest ciągiem arytmetycznym.
Aby lepiej zrozumieć to zadanie przyjrzyj się prostym przykładom.
1) Ciąg \(1,2,3,4,5,...\) jest ciągiem arytmetycznym, gdyż zawsze różnica dwóch kolejnych wyrazów jest taka sama: \(2-1=3-2=4-3=a_{n-1}-a_{n}=1=constans\).
2) Ciąg \(12,23,34,45,...\) jest ciągiem arytmetycznym, bo zawsze różnica dwóch kolejnych wyrazów jest stała: \(23-12=34-23=45-34=a_{n-1}-a_{n}=11=constans\).
Podobne rozumowanie zastosowaliśmy w rozwiązaniu niniejszego zadania.
© medianauka.pl, 2010-01-08, ZAD-494
Zadania podobne

Znaleźć wzór na n-ty wyraz ciągu:
\((\frac{1}{2}+\frac{\sqrt{2}}{2}, 1+\sqrt{2}, \frac{3}{2}+\frac{3\sqrt{2}}{2},2+2\sqrt{2}, ...)\)
Pokaż rozwiązanie zadania

Obliczyć sumę stu pierwszych liczb parzystych.
Pokaż rozwiązanie zadania

Znaleźć dziewiąty wyraz ciągu arytmetycznego, jeżeli wyraz piąty i siódmy jest równy odpowiednio \(7\) i \(\sqrt{7}\).
Pokaż rozwiązanie zadania

Dla jakich wartości \(x\) i \(y\) ciąg \((5, x, y, \frac{1}{5})\) jest ciągiem arytmetycznym?
Pokaż rozwiązanie zadania

Rozwiązać równanie \(2+3+4+...+x=209\).
Pokaż rozwiązanie zadania

Pole trójkąta prostokątnego, którego długości boków tworzą ciąg arytmetyczny, wynosi 6 cm3. Znaleźć długości wszystkich boków trójkąta.
Pokaż rozwiązanie zadania

Ciąg arytmetyczny \((a_n)\) jest określony dla każdej liczby naturalnej \(n\geq 1\). Trzeci i piąty wyraz ciągu spełniają warunek \(a_3+a_5=58\). Wtedy czwarty wyraz tego ciągu jest równy
A. 28
B. 29
C. 33
D. 40
Pokaż rozwiązanie zadania

Czternasty wyraz ciągu arytmetycznego jest równy \(8\), a różnica tego ciągu jest równa \((-\frac{3}{2})\). Siódmy wyraz tego ciągu jest równy:
A. \(\frac{37}{2}\)
B. \(-\frac{37}{2}\)
C. \(-\frac{5}{2}\)
D. \(\frac{5}{2}\)
Pokaż rozwiązanie zadania

Ciąg \((a_n)\) jest określony wzorem \(a_n=2n^2+2n\) dla \(n\geq 1\). Wykaż, że suma każdych dwóch kolejnych wyrazów tego ciągu jest kwadratem liczby naturalnej.
Pokaż rozwiązanie zadania

W nieskończonym ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), suma jedenastu początkowych wyrazów tego ciągu jest równa 187. Średnia arytmetyczna pierwszego, trzeciego i dziewiątego wyrazu tego ciągu, jest równa 12. Wyrazy \(a_1, a_3, a_k\) ciągu \((a_n)\), w podanej kolejności, tworzą nowy ciąg — trzywyrazowy ciąg geometryczny \((b_n)\). Oblicz \(k\).
Pokaż rozwiązanie zadania

Liczby \(2,-1,-4\) są trzema początkowymi wyrazami ciągu arytmetycznego \((a_n)\), określonego dla liczb naturalnych \(n\geq 1\). Wzór ogólny tego ciągu ma postać:
A. \(a_n=-3n+5\)
B. \(a_n=n-3\)
C. \(a_n=-n+3\)
D. \(a_n=3n-5\)
Pokaż rozwiązanie zadania

W ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), dane są: \(a_1=5, a_2=11\). Wtedy
A. \(a_{14}=71\)
B. \(a_{12}=71\)
C. \(a_{11}=71\)
D. \(a_{10}=71\)
Pokaż rozwiązanie zadania

Liczby \(a, b, c\) są — odpowiednio — pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Suma tych liczb jest równa 27. Ciąg \((a−2, b, 2c+1)\) jest geometryczny. Wyznacz liczby \(a, b, c\).
Pokaż rozwiązanie zadania

Dany jest ciąg \((a_n)\) jest określony wzorem \(a_n=\frac{(5-2n)}{6}\) dla \(n\geq 1\). Ciąg ten jest
A. arytmetyczny i jego różnica jest równa \(r=-\frac{1}{3}\).
B. arytmetyczny i jego różnica jest równa \(r=-2\).
C. geometryczny i jego iloraz jest równy \(q=-\frac{1}{3}\).
D. geometryczny i jego iloraz jest równy \(q=\frac{5}{6}\).
Pokaż rozwiązanie zadania

Dla ciągu arytmetycznego \((a_n)\), określonego dla \(n\geq 1\), jest spełniony warunek \(a_4+a_5+a_6=12\). Wtedy
A. \(a_5=4\)
B. \(a_5=3\)
C. \(a_5=6\)
D. \(a_5=5\)
Pokaż rozwiązanie zadania

Dwunasty wyraz ciągu arytmetycznego \((a_n)\), określonego dla \(n\geq 1\), jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu.
Pokaż rozwiązanie zadania

Liczby \(a, b, c\), spełniające warunek \(3a+b+3c=77\), są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Ciąg \((a, b+1, 2c)\) jest geometryczny. Wyznacz liczby \(a, b, c\) oraz podaj wyrazy ciągu geometrycznego.
Pokaż rozwiązanie zadania

W ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), dane są dwa wyrazy: \(a_1= 7 i a_8=−49\). Suma ośmiu początkowych wyrazów tego ciągu jest równa
A. -168
B. -189
C. -21
D. -42
Pokaż rozwiązanie zadania

Ciąg arytmetyczny \((a_n)\) jest określony dla każdej liczby naturalnej \(n\geq 1\). Różnicą tego ciągu jest liczba \(r=−4\), a średnia arytmetyczna początkowych sześciu wyrazów tego ciągu: \(a_1, a_2, a_3, a_4, a_5, a_6\) jest równa 16.
a) Oblicz pierwszy wyraz tego ciągu.
b) Oblicz liczbę \(k\), dla której \(a_{k}=−78\).
Pokaż rozwiązanie zadania

Ciąg \((a, b, c)\) jest geometryczny, ciąg \((a+1, b+5, c)\) jest malejącym ciągiem arytmetycznym oraz \(a+b+c=39\). Oblicz \(a, b, c\).
Pokaż rozwiązanie zadania

W ciągu arytmetycznym \((a_n)\), określonym dla \(n\geq 1\), czwarty wyraz jest równy 3, a różnica tego ciągu jest równa 5. Suma \(a_1+a_2+a_3+a_4\) jest równa
A. \(-42\)
B. \(-36\)
C. \(-18\)
D. \(6\)
Pokaż rozwiązanie zadania

W ciągu arytmetycznym \((a_n)\), określonym dla każdej liczby naturalnej \(n\geq 1\), \(a_5=-31\) oraz \(a_{10}=−66\). Różnica tego ciągu jest równa
A. (-7)
B. (-19,4)
C. 7
D. 19,4
Pokaż rozwiązanie zadania

W ciągu arytmetycznym \(a_n\), określonym dla każdej liczby naturalnej \(n\geq 1\), \(a_1=-1\) i \(a_4=8\). Oblicz sumę stu początkowych kolejnych wyrazów tego ciągu.
Pokaż rozwiązanie zadania

Pan Stanisław spłacił pożyczkę w wysokości 8910 zł w osiemnastu ratach. Każda kolejna rata była mniejsza od poprzedniej o 30 zł. Oblicz kwotę pierwszej raty. Zapisz obliczenia.
Pokaż rozwiązanie zadania