Zadanie maturalne nr 6, matura 2020


Suma wszystkich rozwiązań równania x(x − 3)(x + 2) = 0 jest równa

A. 0

B. 1

C. 2

D. 3


ksiązki Rozwiązanie zadania

Mamy tu do czynienia z równaniem algebraicznym w postaci iloczynowej, skąd wprost odczytujemy pierwiastki (rozwiązania) tego równania:

\(x(x−3)(x+2)=0\)

\((x-0)(x−3)[x-(-2)]=0 \)

Czyli \(x_1=0, x_2=3, x_3=-2\), a suma tych pierwiastków jest równa:

\(x_1+x_2+x_3=0+3-2=1\)

 

ksiązki Odpowiedź

Odpowiedź B

© medianauka.pl, 2023-02-26, ZAD-4737

Zadania podobne

kulkaZadanie - równanie wykładnicze - Zadanie: Rozwiązać równanie wykładnicze
Rozwiązać równanie wykładnicze (\frac{1}{2})^{x-1}-2^{2x}-1=0

Pokaż rozwiązanie zadania

kulkaZadanie - równanie algebraiczne
Rozwiązać równanie wielomianowe x^6-6x^5+x^4+16x^3+15x^2+22x+15=0.

Pokaż rozwiązanie zadania

kulkaZadanie - dziedzina funkcji wymiernej
Wyznaczyć dziedzinę funkcji f(x)=\frac{3x^2-2x+1}{2x^3-3x^2-2x}

Pokaż rozwiązanie zadania

kulkaZadanie - dziedzna funkcji wymiernej
Wyznaczyć dziedzinę funkcji f(x)=\frac{x^4-x^3+x^2+6x-1}{6x^3-5x^2-2x+1}

Pokaż rozwiązanie zadania

kulkaZadanie - Równanie wielomianowe (algebraiczne)
Rozwiązać równanie x^4+3x^3+4x^2+3x+1=0

Pokaż rozwiązanie zadania

kulkaZadanie - równanie algebraiczne (wielomianowe)
Rozwiązać równanie 8x^3-10x^2+x+1=0

Pokaż rozwiązanie zadania

kulkaZadanie - równanie wielomianowe z parametrem
Dla jakich wartości parametrów a i b równanie x^4-6x^3+10x^2-bx+a=0 ma podwójny pierwiastek, równy 3?

Pokaż rozwiązanie zadania

kulkaZadanie - równanie algebraiczne
Rozwiązać równanie 3x^2=\frac{6}{x+1}

Pokaż rozwiązanie zadania

kulkaZadanie - równanie algebraiczne (wielomianowe)
Rozwiązać równanie 30x^5-17x^4+27x^3-15x^2-3x+2=0.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 28, matura 2016 (poziom podstawowy)
Rozwiązać równanie (4-x)(x^2+2x-15)=0.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 6, matura 2015 (poziom podstawowy)
Suma wszystkich pierwiastków równania (x+3)(x+7)(x-11)=0 jest równa:

A. -1
B. 21
C. 1
D. -21


Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 5, matura 2014
Wspólnym pierwiastkiem równań (x^2-1)(x-10)(x-5)=0 \quad i \quad \frac{2x-10}{x-1}=0 jest liczba:

A. -1
B. 1
C. 5
D. 10

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 27, matura 2014
Rozwiąż równanie 9x3+18x2-4x-8=0.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 27, matura 2018

Rozwiąż równanie x3−7x2−4x+28=0.



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 26, matura 2019

Rozwiąż równanie x3−5x2−9x+45=0.



Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 27, matura 2020

Rozwiąż równanie (x2 − 1)(x2 − 2x) = 0.



Pokaż rozwiązanie zadania




Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.
©® Media Nauka 2008-2023 r.