Logo Media Nauka

Zadanie maturalne nr 27, matura 2015 (poziom podstawowy)

Wykaż, że dla każdej liczby rzeczywistej x i dla każdej liczby rzeczywistej y prawdziwa jest nierówność 4x^2-8xy+5y^2\geq 0

ksiązki Rozwiązanie zadania

Przekształcamy wyrażenie tak, aby otrzymać sumę kwadratów, korzystając ze wzorów skróconego mnożenia:


Otrzymaliśmy zdanie prawdziwe dla każdej pary liczb x i y, gdyż suma kwadratów dowolnych liczb zawsze jest większa lub równa zeru.


© medianauka.pl, 2016-12-14, ZAD-3325

Zadania podobne

kulkaZadanie - rozkładanie na czynniki wyrażenia
Rozłożyć na czynniki wyrażenie x^4-y^4

Pokaż rozwiązanie zadania

kulkaZadanie - rozkład sumy algebraicznej na czynniki
Rozłożyć na czynniki wyrażenie 24-10a+a^2, korzystając ze wzorów skróconego mnożenia.

Pokaż rozwiązanie zadania

kulkaZadanie - rozkładanie sum algebraicznych na czynniki
Rozłożyć na czynniki wyrażenie 12a^2-12a+3, korzystając ze wzorów skróconego mnożenia.

Pokaż rozwiązanie zadania

kulkaZadanie - rozkład sumy algebraicznej na czynniki
Rozłożyć na czynniki sumę 2\sqrt{2}+a\sqrt{2}-2\sqrt{3}-a\sqrt{3}

Pokaż rozwiązanie zadania

kulkaZadanie - usuwanie niewymierności z mianownika
Pozbyć się niewymierności z mianownika
a) wzór
b) \frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 8, matura 2015 (poziom rozszerzony)
Udowodnij, że dla każdej liczby rzeczywistej x prawdziwa jest nierówność x^4-x^2-2x+3>0.

Pokaż rozwiązanie zadania

kulkaZadanie maturalne nr 3, matura 2014
Wartość wyrażenia \frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1} jest równa:

A. -2
B. -2\sqr{3}
C. 2
D. 2\sqr{3}

Pokaż rozwiązanie zadania



© Media Nauka 2008-2018 r.