Zadania — matura 2021, matematyka, poziom podstawowy

Zadania maturalne z roku 2021 z matematyki - poziom podstawowy. Są to zadania z arkuszy egzaminacyjnych wraz z rozwiązaniami.


zadanie maturalne

Zadanie nr 1 - maturalne.

Wszystkich liczb naturalnych trzycyfrowych, większych od 700, w których każda cyfra należy do zbioru {1, 2, 3, 7, 8, 9} i żadna cyfra się nie powtarza, jest

A. 108

B. 60

C. 40

D. 299

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 2 - maturalne.

Liczba \(78\) stanowi \(150%\) liczby \(c\). Wtedy liczba \(c\) jest równa

A. \(60\)

B. \(52\)

C. \(48\)

D. \(39\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 3 - maturalne.

Suma \(2\log{\sqrt{10}}+\log{10^3}\) jest równa

A. \(2\)

B. \(3\)

C. \(4\)

D. \(5\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 4 - maturalne.

Różnica \(0,(3)-\frac{23}{33}\) jest równa

A. \(-0,(39)\)

B. \(-\frac{39}{100}\)

C. \(-0,36\)

D. \(-\frac{4}{11}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 5 - maturalne.

Rozważamy przedziały liczbowe \((−\infty, 5)\) i \(\langle −1, +\infty)\). Ile jest wszystkich liczb całkowitych, które należą jednocześnie do obu rozważanych przedziałów?

A. \(6\)

B. \(5\)

C. \(4\)

D. \(7\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 6 - maturalne.

Zbiorem wszystkich rozwiązań nierówności \(\frac{(2-x)}{2}-2x\geq 1\) jest przedział

A. \(\langle 0, +\infty)\)

B. \((−\infty, 0\rangle\)

C. \((−\infty, 5\rangle\)

D. \((−\infty,\frac{1}{3}\rangle\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 7 - maturalne.

Ciąg \((b_n)\) jest określony wzorem \(b_n=3n^2-25n\) dla każdej liczby naturalnej \(n\geq 1\). Liczba niedodatnich wyrazów ciągu \((b_n)\) jest równa

A. 14

B. 13

C. 9

D. 8

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 8 - maturalne.

Ciąg arytmetyczny \((a_n)\) jest określony dla każdej liczby naturalnej \(n\geq 1\). Trzeci i piąty wyraz ciągu spełniają warunek \(a_3+a_5=58\). Wtedy czwarty wyraz tego ciągu jest równy

A. 28

B. 29

C. 33

D. 40

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 9 - maturalne.

Dla każdego kąta ostrego α iloczyn \(\frac{cos\alpha}{1-\sin^2\alpha}\cdot \frac{1-cos^2\alpha}{sin\alpha}\) jest równy

A. \(\sin{\alpha}\)

B. \(tg\alpha\)

C. \(\cos{\alpha}\)

D. \(\sin^2{\alpha}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 10 - maturalne.

Prosta \(k\) jest styczna w punkcie \(A\) do okręgu o środku \(O\). Punkt \(B\) leży na tym okręgu i miara kąta \(AOB\) jest równa 80°. Przez punkty \(O\) i \(B\) poprowadzono prostą, która przecina prostą \(k\) w punkcie \(C\) (zobacz rysunek).

Zadanie 17, matura 2021

A. 10°

B. 30°

C. 40°

D. 50°

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 11 - maturalne.

Przyprostokątna \(AC\) trójkąta prostokątnego ABC ma długość 8 oraz \(tg\alpha=\frac{2}{5}\) (zobacz rysunek).

Zadanie 18, matura 2021

Pole tego trójkąta jest równe

A. \(12\)

B. \(\frac{37}{3}\)

C. \(\frac{62}{5}\)

D. \(\frac{64}{5}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 12 - maturalne.

Pole pewnego trójkąta równobocznego jest równe \(\frac{4\sqrt{3}}{9}\). Obwód tego trójkąta jest równy

A. 4

B. 2

C. \(\frac{4}{3}\)

D. 2/3

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 13 - maturalne.

W trójkącie \(ABC\) bok \(BC\) ma długość 13, a wysokość \(CD\) tego trójkąta dzieli bok \(AB\) na odcinki o długościach \(|AD|=3\) i \(|BD|=12\) (zobacz rysunek obok). Długość boku \(AC\) jest równa

Zadanie 20, matura 2021, matematyka

A. \(\sqrt{34}\)

B. \(\frac{13}{4}\)

C. \(2\sqrt{14}\)

D. \(3\sqrt{45}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 14 - maturalne.

Na poniższym rysunku przedstawiono wykres funkcji \(f\) określonej w zbiorze \([−6, 5]\).

Rysunek do zadania maturalnego z matematyki, nr 7 z 2021 roku

Funkcja \(g\) jest określona wzorem \(g(x)=f(x)-2\) dla \(x\in [−6, 5]\). Wskaż zdanie prawdziwe.

A. Liczba \(f(2)+g(2)\) jest równa \((−2)\).

B. Zbiory wartości funkcji \(f\) i \(g\) są równe.

C. Funkcje \(f\) i \(g\) mają te same miejsca zerowe.

D. Punkt \(P=(0,−2)\) należy do wykresów funkcji \(f\) i \(g\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 15 - maturalne.

Funkcja liniowa \(f\) przyjmuje wartość \(2\) dla argumentu \(0\), a ponadto \(f(4)-f(2)=6\). Wyznacz wzór funkcji \(f\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 16 - maturalne.

Trzywyrazowy ciąg \((15, 3x, \frac{5}{3})\) jest geometryczny i wszystkie jego wyrazy są dodatnie. Stąd wynika, że:

A. \(x=\frac{3}{5}\)

B. \(x=\frac{4}{5}\)

C. \(x=1\)

D. \(x=\frac{5}{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 17 - maturalne.

Punkty \(A, B, C\) i \(D\) leżą na okręgu o środku S. Miary kątów \(SBC, BCD, CDA\) są równe odpowiednio: \(|\angle SBC|=60°, |\angle BCD|=110°, |\angle CDA|=90°\) (zobacz rysunek).

Zadanie 21, matura z matematyki 2021

Wynika stąd, że miara \(\alpha\); kąta \(DAS\) jest równa

A. 25°

B. 30°

C. 35°

D. 40°

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 18 - maturalne.

Liczba \(100^5\cdot (0,1)^{-6}\) jest równa

A. \(10^{13}\)

B. \(10^{16}\)

C. \(10^{-1}\)

D. \(10^{-30}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 19 - maturalne.

Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów równań. Wskaż ten układ, którego geometryczną interpretację przedstawiono na rysunku.

Zadanie 8, matura 2021, matematyka

A. \(\begin{cases}y=x+1\\y=-2x+4\end{cases}\)

B. \(\begin{cases}y=x-1\\y=2x+4\end{cases}\)

C. \(\begin{cases}y=x-1\\y=2x+4\end{cases}\)

D. \(\begin{cases}y=x+1\\y=2x+4\end{cases}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 20 - maturalne.

Na rysunku obok przedstawiono geometryczną interpretację jednego z niżej zapisanych układów

Proste o równaniach \(y=3x-5\) oraz \(y=\frac{(m-3)}{2}+\frac{9}{2}\) są równoległe, gdy

A. \(m=1\)

B. \(m=3\)

C. \(m=6\)

D. \(m=9\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 21 - maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x^2}{(2x-2)}\) dla każdej liczby rzeczywistej \(x \neq 1\). Wtedy dla argumentu \(x=\sqrt{3}-1\) wartość funkcji \(f\) jest równa

A. \(\frac{1}{\sqrt{3}-1)}\)

B. \(-1\)

C. \(1\)

D. \(\frac{1}{(\sqrt{3}-2)}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 22 - maturalne.

Do wykresu funkcji \(f\) określonej dla każdej liczby rzeczywistej \(x\) wzorem \(f(x)=3^x-2\) należy punkt o współrzędnych

A. \((-1,-5)\)

B. \((0,-2)\)

C. \((0,-1)\)

D. \((2,4)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 23 - maturalne.

Funkcja kwadratowa \(f\) określona wzorem \(f(x)=-2(x+1)(x-3)\) jest malejąca w przedziale

A. \([1, +\infty)\)

B. \((−\infty, 1]\)

C. \((−\infty, −8]\)

D. \([−8, +\infty)\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 24 - maturalne.

W równoległoboku \(ABCD\), przedstawionym na rysunku, kąt α ma miarę 70°.

Zadanie 22, matura z matematyki 2021

Wtedy kąt β ma miarę

A. 80°

B. 70°

C. 60°

D. 50°

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 25 - maturalne.

W każdym n-kącie wypukłym (n≥ 3) liczba przekątnych jest równa n(n-3)/2. Wielokątem wypukłym, w którym liczba przekątnych jest o 25 większa od liczby boków, jest

A. siedmiokąt.

B. dziesięciokąt.

C. dwunastokąt.

D. piętnastokąt.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 26 - maturalne.

Pole figury \(F_1\) złożonej z dwóch stycznych zewnętrznie kół o promieniach 1 i 3 jest równe polu figury \(F_2\) złożonej z dwóch stycznych zewnętrznie kół o promieniach długości \(r\) (zobacz rysunek).

Rysunek do zadani amaturalnego nr 24, 2021

Długość \(r\) promienia jest równa

A. \(\sqrt{3}\)

B. \(2\)

C. \(\sqrt{5}\)

D. \(3\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 27 - maturalne.

Punkt \(A=(3,−5)\) jest wierzchołkiem kwadratu \(ABCD\), a punkt \(M=(1,3)\) jest punktem przecięcia się przekątnych tego kwadratu. Wynika stąd, że pole kwadratu \(ABCD\) jest równe

A. \(68\)

B. \(136\)

C. \(2\sqrt{34}\)

D. \(8\sqrt{34}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 28 - maturalne.

Z wierzchołków sześcianu \(ABCDEFGH\) losujemy jednocześnie dwa różne wierzchołki. Prawdopodobieństwo tego, że wierzchołki te będą końcami przekątnej sześcianu \(ABCDEFGH\), jest równe

A. \(\frac{1}{7}\)

B. \(\frac{4}{7}\)

C. \(\frac{1}{14}\)

D. \(\frac{3}{7}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 29 - maturalne.

Sześciowyrazowy ciąg liczbowy \((1, 2, 2x, x + 2, 5, 6)\) jest niemalejący. Mediana wyrazów tego ciągu jest równa \(4\). Wynika stąd, że

A. \(x=1\)

B. \(x=\frac{3}{2}\)

C. \(x=2\)

D. \(x=\frac{8}{3}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 30 - maturalne.

Rozwiąż nierówność \(x^2-5x ≤ 14\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 31 - maturalne.

Wykaż, że dla każdych trzech dodatnich liczb \(a,b\) i \(c\) takich, że \(a<b\), spełniona jest nierówność \(\frac{a}{b}<\frac{(a+c)}{(b+c)}\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 32 - maturalne.

Rozwiąż równanie \((3x+2)/(3x-2)=4-x\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 33 - maturalne.

Trójkąt równoboczny \(ABC\) ma pole równe \(9\sqrt{3}\). Prosta równoległa do boku \(BC\) przecina boki \(AB\) i \(AC\) — odpowiednio — w punktach \(K\) i \(L\). Trójkąty \(ABC\) i \(AKL\) są podobne, a stosunek długości boków tych trójkątów jest równy \(\frac{3}{2}\). Oblicz długość boku trójkąta \(AKL\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 34 - maturalne.

Gracz rzuca dwukrotnie symetryczną sześcienną kostką do gry i oblicza sumę liczb wyrzuconych oczek. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że suma liczb wyrzuconych oczek jest równa 4 lub 5, lub 6.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 35 - maturalne.

Punkty \(A=(−20, 12)\) i \(B=(7, 3)\) są wierzchołkami trójkąta równoramiennego ABC, w którym \(|AC|=|BC|\). Wierzchołek \(C\) leży na osi \(Oy\) układu współrzędnych. Oblicz współrzędne wierzchołka \(C\) oraz obwód tego trójkąta.

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 35.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
arkusze maturalne CKE z matematyki
ARKUSZE CKE

Źródło: Centralna Komisja Egzaminacyjna

 



©® Media Nauka 2008-2023 r.