Zadania — pochodna funkcji

Znajdziesz tutaj zadania z pochodnej funkcji (rachunek różniczkowy). Przykładowymi zadaniami opatrzono takie tamaty jak własności pochodnej, pochodna funkcji złożonej, czy zwykłe obliczanie pochodnych. To zadania z rozwiązaniami. Są tu zadania autorskie oraz maturalne na poziomie podstawowym i rozszerzonym z kilku ostatnich lat.


Zadanie nr 1.

Obliczyć pochodną funkcji \(f(x)=-x^2+x-1\) w punkcie \(x_0=-1\).

Pokaż rozwiązanie zadania.

Zadanie nr 2.

Obliczyć pochodną funkcji \(f(x)=x^2\) w punkcie \(x_0\).

Pokaż rozwiązanie zadania.

Zadanie nr 3.

Obliczyć pochodną funkcji \(f(x)=\frac{1}{x+1}\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 4.

Obliczyć pochodną funkcji \(f(x)=|x|\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 5.

Obliczyć pochodną funkcji \(f(x)=\begin{cases} x^2 \ dla \ x\geq 0 \\ -2x^2 \ dla \ x<0 \end{cases}\) w punkcie \(x_0=0\).

Pokaż rozwiązanie zadania.

Zadanie nr 6.

Obliczyć pochodną funkcji

\(a) f(x)=-\frac{1}{2}\)

\(b) g(x)=x^{17}\)

\(c) h(x)=x^{\frac{1}{3}}\)

\( d) i(x)=x\)

\( e) j(x)=\sqrt{2}\)

Pokaż rozwiązanie zadania.

Zadanie nr 7.

Obliczyć pochodną funkcji:

\(a) f(x)=-x+5\)

\(b) g(x)=-5x^2+2\sqrt{x}\)

\( c) h(x)=\sin{x}+2\cos{x}\)

\( d) i(x)=-\frac{1}{x}-tgx\)

\( e) j(x)=3x^3-2x^2+x-1\)

Pokaż rozwiązanie zadania.

Zadanie nr 8.

Obliczyć pochodną funkcji:

\(a) f(x)=x\sin{x}\)

\(b) g(x)=\sin^2{x}\)

\(c) h(x)=x\sqrt{x}\)

Pokaż rozwiązanie zadania.

Zadanie nr 9.

Obliczyć pochodną funkcji:

a) \(f(x)=\frac{\sin{x}}{x}\)

b) \(f(x)=\frac{2x+1}{3x-1}\)

c) \(f(x)=\frac{\sin{x}}{\cos{x}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 10.

Obliczyć pochodną funkcji:

a) \(f(x)=\frac{\sqrt{x}}{x}\)

b) \(f(x)=\frac{5x^3-x+1}{x^2-1}\)

c) \(f(x)=\frac{5x^4-3x^2}{2x^3-1}\)

Pokaż rozwiązanie zadania.

Zadanie nr 11.

Obliczyć pochodną funkcji:

a) \(f(x)=\sin{2x}\)

b) \(f(x)=\sqrt{x^3-2x+1}\)

c) \(f(x)=\sqrt[3]{1+x^2}\)

Pokaż rozwiązanie zadania.

Zadanie nr 12.

Obliczyć pochodną funkcji:

a) \(f(x)=\sin{(\cos{x})}\)

b) \(f(x)=\sqrt{x^2+\sqrt{x}}\)

Pokaż rozwiązanie zadania.

Zadanie nr 13.

Obliczyć pochodną funkcji \(f(x)=\sin^2{x}\cdot \cos^2{x}\).

Pokaż rozwiązanie zadania.

Zadanie nr 14.

Obliczyć pochodną funkcji \(f(x)=\frac{\sin{2x}}{1+cos^2{x}}\).

Pokaż rozwiązanie zadania.

Zadanie nr 15.

Obliczyć drugą pochodną funkcji:

a) \(f(x)=\sqrt{x}\)

b) \(f(x)=x^2-x^3+\frac{1}{x^3}\)

Pokaż rozwiązanie zadania.

Zadanie nr 16.

Obliczyć drugą pochodną funkcji:

a) \(f(x)=\cos^2{2x}\)

b) \(f(x)=\frac{x^2+1}{x^2-1}\)

Pokaż rozwiązanie zadania.

Zadanie nr 17.

Dla jakiej wartości argumentu \(x\) druga pochodna funkcji \(f(x)=\frac{1}{1+x}\) jest równa \(\frac{1}{4}\)?

Pokaż rozwiązanie zadania.

Zadanie nr 18.

Rozwiąż równanie \(y''+y'=0\), gdzie \(y=x^3+1\).

Pokaż rozwiązanie zadania.

Zadanie nr 19.

Znaleźć równanie stycznej do krzywej \(f(x)=\frac{2}{x}\) w punkcie \((2,1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 20.

Znaleźć równanie stycznej do krzywej \(f(x)=\sin{x}\) w punkcie \((\frac{\pi}{2},1)\).

Pokaż rozwiązanie zadania.

Zadanie nr 21.

Znaleźć równanie stycznej do okręgu \((x-1)^2+y^2=2\) w punkcie \((1,-\sqrt{2})\).

Pokaż rozwiązanie zadania.

Zadanie nr 22.

Wyznaczyć przedziały monotoniczności funkcji \(f(x)=\frac{x^2}{x-1}\).

Pokaż rozwiązanie zadania.

Zadanie nr 23.

Wyznaczyć przedziały monotoniczności funkcji \(f(x)=x^3-6x+5\).

Pokaż rozwiązanie zadania.

Zadanie nr 24.

Wyznaczyć przedziały monotoniczności funkcji \(f(x)=x^2+\frac{2}{x}\).

Pokaż rozwiązanie zadania.

Zadanie nr 25.

Wyznaczyć przedziały monotoniczności funkcji \(f(x)=\sqrt{2}+1\).

Pokaż rozwiązanie zadania.

Zadanie nr 26.

Znaleźć ekstremum funkcji \(f(x)=\sqrt{1-x^2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 27.

Znaleźć ekstremum funkcji \(f(x)=2x-\frac{1}{x}\).

Pokaż rozwiązanie zadania.

Zadanie nr 28.

Znaleźć ekstremum funkcji \(f(x)=2x+\frac{1}{x}\).

Pokaż rozwiązanie zadania.

Zadanie nr 29.

Znaleźć ekstremum funkcji \(f(x)=\frac{2x}{x^2+1}\).

Pokaż rozwiązanie zadania.

Zadanie nr 30.

Znaleźć największą i najmniejszą wartość funkcji \(f(x)=3x+\frac{1}{x}\) w przedziale \(\langle-1;1\rangle\).

Pokaż rozwiązanie zadania.

Zadanie nr 31.

Znaleźć największą i najmniejszą wartość funkcji \(f(x)=1+\frac{x^2}{x+2}\) w przedziale \(\langle -\frac{3}{2};0\rangle\).

Pokaż rozwiązanie zadania.

Zadanie nr 32.

Znaleźć asymptoty funkcji \(f(x)=\frac{x^2-1}{4x^2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 33.

Znaleźć asymptoty funkcji \(f(x)=\frac{x^2-3}{x-2}\).

Pokaż rozwiązanie zadania.

Zadanie nr 34.

Rzucony kamień zakreśla w powietrzu tor opisany równaniem \(y=x-x^2\). Jakie jest maksymalne wzniesienia kamienia?

Pokaż rozwiązanie zadania.

Zadanie nr 35.

Jakie wymiary powinna mieć metalowa puszka w kształcie walca, aby przy określonej pojemności \(V\) zużyć możliwie najmniej blachy do jej wykonania?

Pokaż rozwiązanie zadania.

Zadanie nr 36.

Zbadać przebieg zmienności funkcji \(f(x)=x^3+x^2-5x+3\) i naszkicować jej wykres.

Pokaż rozwiązanie zadania.

Zadanie nr 37.

Zbadać przebieg zmienności funkcji \(f(x)=\frac{x^2-1}{x-4}\) i naszkicować jej wykres.

Pokaż rozwiązanie zadania.

Zadanie nr 38.

Zbadać przebieg zmienności funkcji \(f(x)=\frac{4x+1}{2x^2-4x}\) i naszkicować jej wykres.

Pokaż rozwiązanie zadania.

Zadanie nr 39.

Zbadać przebieg zmienności funkcji \(f(x)=\frac{x^3+1}{x^2}\) i naszkicować jej wykres.

Pokaż rozwiązanie zadania.

Zadanie nr 40.

Obliczyć pochodną funkcji \(f(x)=\frac{\sqrt[5]{x}}{10x^8}\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 41 - maturalne.

Funkcja \(f(x)=\frac{3x-1}{x^2+4}\) jest określona dla każdej liczby rzeczywistej \(x\). Pochodna tej funkcji jest określona wzorem:

A. \(f'(x)=\frac{-3x^2+2x+12}{(x^2+4)^2}\)

B. \(f'(x)=\frac{-9x^2+2x-12}{(x^2+4)^2}\)

C. \(f'(x)=\frac{3x^2-2x-12}{(x^2+4)^2}\)

D. \(f'(x)=\frac{9x^2-2x+12}{(x^2+4)^2}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 42 - maturalne.

Parabola o równaniu \(y=2-\frac{1}{2}x^2\) przecina oś \(Ox\) układu współrzędnych w punktach \(A=(- 2,0)\) i \(B=(2,0)\). Rozpatrujemy wszystkie trapezy równoramienne \(ABCD\), których dłuższą podstawą jest odcinek \(AB\), a końce \(C\) i \(D\) krótszej podstawy leżą na paraboli (zobacz rysunek).

Zadanie 16, ilustracja, matura 2016

Wyznacz pole trapezu \(ABCD\) w zależności od pierwszej współrzędnej wierzchołka \(C\). Oblicz współrzędne wierzchołka \(C\) tego z rozpatrywanych trapezów, którego pole jest największe.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 43 - maturalne.

Funkcja \(f\) określona jest wzorem \(f(x)=x^3-2x^2+1\) dla każdej liczby rzeczywistej \(x\). Wyznacz równania tych stycznych do wykresu funkcji \(f\), które są równoległe do prostej o równaniu \(y=4x\).

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 44 - maturalne.

Rozpatrujemy wszystkie stożki, których przekrojem osiowym jest trójkąt o obwodzie 20. Oblicz wysokość i promień podstawy tego stożka, którego objętość jest największa. Oblicz objętość tego stożka.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 45 - maturalne.

Należy zaprojektować wymiary prostokątnego ekranu smartfona, tak aby odległości tego ekranu od krótszych brzegów smartfona były równe 0,5 cm każda, a odległości tego ekranu od dłuższych brzegów smartfona były równe 0,3 cm każda (zobacz rysunek – ekran zaznaczono kolorem szarym). Sam ekran ma mieć powierzchnię 60 cm2. Wyznacz takie wymiary ekranu smartfona, przy których powierzchnia ekranu wraz z obramowaniem jest najmniejsza.

zadanie maturalne 15, matura rozszerzona 2020

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 46 - maturalne.

Pewien zakład otrzymał zamówienie na wykonanie prostopadłościennego zbiornika (całkowicie otwartego od góry) o pojemności 144 m3. Dno zbiornika ma być kwadratem. Żaden z wymiarów zbiornika (krawędzi prostopadłościanu) nie może przekraczać 9 metrów.

Całkowity koszt wykonania zbiornika ustalono w następujący sposób:
– 100 zł za 1 m2 dna
– 75 zł za 1 m2 ściany bocznej.

Oblicz wymiary zbiornika, dla którego tak ustalony koszt wykonania będzie najmniejszy.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 47 - maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=\frac{x^3-8}{x-2}\) dla każdej liczby rzeczywistej \(x\neq 2\). Wartość pochodnej tej funkcji dla argumentu \(x=\frac{1}{2}\) jest równa

A. \(\frac{3}{4}\)

B. \(\frac{9}{4}\)

C. 3

D. \(\frac{54}{8}\)

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 48 - maturalne.

Rozpatrujemy wszystkie trójkąty równoramienne o obwodzie równym 18.

a) Wykaż, że pole \(P\) każdego z tych trójkątów, jako funkcja długości \(b\) ramienia, wyraża się wzorem \(P(b)=\frac{(18-2b)\cdot \sqrt{18b-81}}{2}\).

b) Wyznacz dziedzinę funkcji \(P)\.

c) Oblicz długości boków tego z rozpatrywanych trójkątów, który ma największe pole.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 49 - maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=\frac{3x^2-2x}{x^2+2x+8}\) dla każdej liczby rzeczywistej \(x\). Punkt \(P=(x_0,3)\) należy do wykresu funkcji \(f\). Oblicz \(x_0\) oraz wyznacz równanie stycznej do wykresu funkcji \(f\) w punkcie \(P\). Zapisz obliczenia.

Pokaż rozwiązanie zadania.

zadanie maturalne

Zadanie nr 50 - maturalne.

Funkcja \(f\) jest określona wzorem \(f(x)=81^{\log_3{x}}+\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3}\cdot x^2-6x\) dla każdej liczby dodatniej \(x\).

1. Wykaż, że dla każdej liczby dodatniej \(x\) wyrażenie \(81^{\log_3{x}}+\frac{2\cdot\log_2 {\sqrt{7}}\cdot \log_3{2}}{3}\cdot x^2-6x\) można równoważnie przekształcić do postaci \(x^4+x^2-6x\).

2. Oblicz najmniejszą wartość funkcji \(f\) określonej dla każdej liczby dodatniej \(x\). Zapisz obliczenia. Wskazówka: przyjmij, że wzór funkcji \(f\) można przedstawić w postaci \(f(x)=x^4+x^2-6x\).

Pokaż rozwiązanie zadania.





Liczba odnalezionych zadań w zbiorze: 50.

Oznaczenia

zadanie maturalne Zadania maturalne — poziom podstawowy. zadanie maturalne Zadania maturalne — poziom rozszerzony.

Zbiór zadań z matematyki
Zbiór wszystkich zadań z matematyki wraz z pełnymi rozwiązaniami.
AI
Zbiór zadań maturalnych z ubiegłych lat na poziomie podstawowym i rozszerzonym oraz centrum dowodzenia dla maturzystów.
wykresy on-line
Narysuj wykres funkcji w programie do szkicowania wykresów i odczytaj jego własności.
Rachunek różniczkowy
Rachunek różniczkowy to dziedzina analizy matematycznej, która powstała w XVII w. Jej podstawy niezależnie od siebie określili sam Newton oraz Leibniz.

 



©® Media Nauka 2008-2023 r.